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1.0 Introduction.

Prediction methods based on probability density functions (pdfs) have played an important
role in turbulent combustion for some time. The interaction of mixing and chemical reactions
is an important factor in determining the performance of practical combustion devices. In
the special application of the SSME pre-burner. this interaction can affect the internal fluid
mixing and as a result significantly alter the exit temperature profile. To fully anticipate
the effect of the interaction of mixing and combustion reactions in a design process requires
extensive research in turbulent combustion in a range of Mach numbers relevant for the

applications. The aim of this effort is to develop accurate prediction methods.

Prediction methods for turbulent reacting flows developed in analogy to nonreacting
flows were based on statistical moments of first and second order. The mean value of density
(and other thermodynamic variables) were determined using an assumed form for the pdf of
the scalar variables describing the local thermodynamic state. This approach is acceptable for
reacting flows if only the expectations of the stable species and temperature and density are of
interest and where the reactions are so fast that equilibrium is achieved. It is well known that
assumed forms of the pdf are not flexible enough to represent truly the variation of the pdf
occurring in a turbulent nonhomogeneous flow with finite rate chemistry (Kollmann and Chen.
1992). Hence. methods employing the pdf directly have been developed for turbulent reacting
flows (Pope. 1985. Kollmann. 1990). They have several significant advantages. notably the
ability to deal with the highly nonlinear source terms arising in combustion rigorously in
closed form. The aim of the present project were the analysis of pdf methods and the
development of closures for mixing and turbulent transport of single point pdfs in compressible

and incompressible flows. .

The main parts of the project were the analysis of the foundations of pdf methods



including the recent development of mapping closures (Chen et al. 1989). The closure models
for turbulent mixing were analvzed in detail and pdf methods were extended to compressible
turbulent flows. The application of a particular pdf method to supersouic turbulent jet flames

burning hydrogen with air was used as a test case to evaluate the closure model.

2.0 Objectives.

The objective of the proposed research project was the analysis of single point closures based
on pdfs and characteristic functions and the development of a prediction method for the jomnt
velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and
stagnation point flows with and without chemical reactions were be calculated as principal
applications. Pdf methods for compressible reacting flows were developed and tested in

comparison with available experimental data.

3.0 Research work.

The research work carried in this project was concentrated on the closure of pdf equations

for incompressible and compressible turbulent flows with and without chemical reactions.

3.1 Foundations of pdf methods.

The single point pdf equations. which are the central part of the prediction methods for
turbulent reacting flows, can be deduced from the exact and closed transport equation for the
characteristic functional containing all the statistical information on the complete flow field.
The result of this derivation is the equation for the characteristic function, corresponding via
Fourier transformation to the single point pdf. It follows that two equivalent formulations
of single and multi-point pdf equations emerge as a consequence of the functional equation

at special argument functions composed of Dirac-pseudofunctions. All nonclosed terms can
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be given in terms of the characteristic function or pdfs and closure models can he set up in
either formulation. This fact can be exploited to obtain equivalent expressions for a closure
model. For instance. it turns out that the exact mixing term and. therefore. the pair-exchange
model for it in the single point pdf equation. lias the property to increase the width of the
characteristic function (analogous to a random process with positive diffusivity for the pdf) as
turbulence decays. since the limit of zero fluctuations is given by unity as Fourier transform of

the Dirac spike for the pdf. The detailed discussion of these results can be found in appendix

L.

3.2 Interaction of Turbulence and Chemical Kinetics.

The objective of this part of the project is to provide a fundamental understanding of the
physics inherent in various processes causing turbulence to interact with chemical kinetics.
In view of the importance of various practical combustion processes that occur in turbulent

flows, the emphasis is put on the influence of turbulence on chemical kinetics.

The interaction of turbulence and chemical reactions oceurs in turbulent reacting fows
over a wide range of flow conditions. Various degrees of interaction between turbulence and
chemical reactions can lead to different phenomena. Weak interactions between turbulence
and chemical reactions may simply modify the flame slightly causing wrinkles of flame surface
(Williams. 1989). Strong interactions could cause a significant modification in both the
chemical reactions and the turbulence. If chemical reactions cause small density changes
the flow, then the turbulence is weakly affected by the chemical process. but the turbulence
may still have strong influence on the chemical reactions. However, the purpose of combustion
is generating heat: therefore, one expects large density changes (i.e.. an order of magnitude)

which can alter the fluid dynamics significantly.

The research work was aimed at the investigation of mean reaction rates i nonprei

ixed systems. Rigorous bounds were established for the mean reaction rates in binary and
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multi-component mixtures for given fluctuation levels of composition and temperature. The
combustion of methane with air was nsed as an application of the prediction model incor-
porating finite rate chemistry. Mixedness parameters were evaluated and the hounds on the
reaction rates were verified. The main conclusion was that the quasi-laminar calculation of
mean reaction rates is unacceptable if unconditional mean values are used. The details can

be found in appendix II.

3.3 Mapping methods for pdf equations.

A new approach for the closure of pdf equations was suggested by Kraichnan (Chen et
al., 1989) during the grant period and an investigation of the applicability of mapping closures
to turbulent combustion problems was undertaken. Kraichnan's idea to apply mappings as
tool in constructing closures for pdf equations (Chen et al. 1989. Kraichnan 1990. Feng 1991.
Pope 1991, Valifio et al. 1991) proved very successful for the ca-e of a single scalar variable in
homogeneous turbulence. It was not clear how powerful this approach is for the case of more
than one variable { Pope. 1991). Pope’s (1991) method relies on the cumulative distribution
function and the representation of the pdf of n > 1 random variables as the product of »
conditional pdfs. The resulting closure is, therefore. dependent on the ordering of the n
variables appearing in the conditions. The investigation of mapping methods in the context
of the present project lead to the important result. that the use of the cumulative distribution
function can be avoided altogether and that the mapping equations can be established directly
using the pdf equation. No particular ordering of the variables is required. The detailed

results are presented in appendix IIL

3.4 Prediction of supersonic turbulent flames.

The prediction of turbulent supersonic nonpremixed flanies was the central part of the
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present project. The effects of compressibility. the interaction with random shocks created in
the turbulent zone and shocks created outside the turbulent zone are crneial to the snecessful
prediction of compressible turbulent flows. Pdf methods can he adapted to deal with these
phenomena and a detailed investigation into pdf formulations for compressible reacting flows
was carried out. It was found that even for equilibrium chemistry at least three scalar variables
are necessary to fix the local thermodynamic state. In fact, it is advantageous to cousider
a fourth scalar to obtain a pdf equation with the familiar structure. Compressibility effecrs
are dealt with using the generalized Langevin approach. A pdf closure including mixture
fraction, the logarithm of the (dimensionless) density. the internal energy per unit mass and
the relative rate of volume expansion was established. The supersonic flames of Evans et al.
(1978) were used as test cases and several successful runs were carried out. The results are

presnted in detail in appendix IV.
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Abstract. Probability density function (pdf) methods provide a complete statistical description of
turbulent flow fields at a single point or a finite number of points. Turbulent convection and
finite-rate chemistry can be treated in closed and exact form with pdfs in contrast to methods
based on statistical moments. The equations for pdfs at a finite number of points are indetermi-
nate due to molecular transport and pressure-gradient terms which require pdfs of higher order.
The theoretical foundation of pdfs methods are developed in this paper starting from the exact
and linear equations on the functional level. The closure problem for single-point pdf equations is
treated in detail and several closure models are analyzed. Turbulent combustion at low Mach
numbers constitutes an important area of application and selected results for a turbulent methane
flame are presented as an example. The extension of pdf methods to supersonic turbulent flows
with and without chemical reactions are outlined. Progress in the numerical solution of pdf
equations is reviewed briefly. In the concluding remarks, both the advantages and disadvantages
of pdf methods are evaluated.

1. Introduction

Significant progress has been achieved over the last 10 years in the theory and application of
evolution equations for probability density functions (pdfs) to turbulent flows at low Mach numbers.
Pope (1985) reviewed the development up to 1985 and provided a detailed introduction to this
subject. The present paper is concerned with the theoretical foundation and recent development of pdf
methods. Pdf methods derive their justification from the basic fact that turbulent convection and
chemical reactions can be dealt with in exact and closed form. This is in stark contrast to the
approach based on statistical moments, which requires closure models for nonlinear processes such as
convection or chemical reactions. Pdf methods succeed here because they transform certain nonlinear
processes into linear terms with variable coefficients by converting the associated dependent variables
in the basic laws into independent variables of the pdf. Hence, two of the most important closure
problems encountered in moment equations are overcome by pdf methods. Furthermore, pdfs provide
a complete statistical description of the fluctuations at a single point or a finite number of points in
the flow field. However, the equation governing the evolution of the pdf at n points is indeterminate,
because the terms accounting for molecular transport and the fluctuating pressure gradient require the
pdf at n+ 1 points. The closure problem for these two terms must be overcome to arrive at a
determinate equation. The numerical solution of pdf equations was for some time considered next to

! This research was supported by NASA-Lewis Grants NAG 3-667 (T. Van Overbeke project monitor) and NAG 3-836
(R. Claus project monitor) and by a grant from the Spanish Ministry of Education (CAICYT) during the authors stay at the
University of Zaragoza in 1985-1986).
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250 W. Kollmann

impossible, rendering the interest in pdfs academic. However, stochastic simulation techniques pio-
neered by Pope (1985) proved very successful for homogeneous and nonhomogeneous flows (in parti-
cular the parabolic type). The reason for the difficulty in the numerical solution of pdf equations is the
large number of independent variables of the pdf in contrast to moment methods, which may consist
of a large number of equations governing functions of a few independent variables. The reason for the
success of stochastic simulation techniques is the fact that the numerical effort grows only linearily
with the number of independent variables. As a consequence, a variety of turbulent flows ranging
from incompressible turbulent shear layers (see Pope, 1985; Kollmann and Wu, 1987; Haworth and
Pope, 1987) to turbulent reacting flows with strong density fluctuations and finite-rate chemistry
(Pope and Correa, 1986; Jones and Kollmann, 1987; Chen et al., 1989) can now be computed with
pdf methods.

The aim of this paper is to provide a detailed discussion of the theory and application of pdf
methods. In Section 2 the basic laws governing the flow of Newtonian fluids are set up first in the
Eulerian and the Lagrangean frame for later reference. Then the exact and linear equations for the
characteristic functionals in Eulerian and Lagrangean frames are discussed. They form the theoretical
basis for pdf and moment methods. Pdf equations in both the Eulerian and the Lagrangean frames
are then derived as Fourier transforms of the equations for the characteristic functions, which follow
from the exact equations on the functional level. The case of the single-point pdf equation is the
primary focus of the subsequent sections. In Section 3 the possible formulations for the nonclosed
terms in the pdf equation are discussed first. Their properties are assessed and the closure models for
the molecular-transport and the fluctuating pressure-gradient terms are reviewed. Single-point pdf
equations do not provide information on turbulent length or time scales. Hence, methods of incorpo-
rating scale information are introduced in order to complete the prediction method. Section 4 is
devoted to the application of pdf methods and their extension to new areas. The most important
applications are turbulent combustion flows. The example of a turbulent nonpremixed methane flame
is presented in some detail to verify the power of pdf methods. Then the extension to supersonic flows
and the interaction of turbulence with shock waves are discussed along with directions for future
research. The numberical-solution method was presented in detail in Pope’s (1985) review article.
Hence, only the most recent developments are discussed briefly in Section 5. Finally, in Section 6
conclusions are drawn for the theory and application of pdf methods.

2. Theoretical Background

The analysis of turbulent flows is restricted to Newtonian fluids in the gaseous phase for which the
thermodynamic relations for ideal gases are assumed to hold. The basic laws of physics are assembled
first in an appropriate form for later use. Then it is shown that pdf methods are part of a
general framework for the treatment of turbulent flows on the functional level This functional
formulation is discussed briefly and the pdf-transport equation is derived from it.

2.1. Basic Laws

The thermodynamic state of a flowing mixture of ideal gases is locally specified if the composition and
two independent (intensive) thermodynamic variables and velocity are known. The values for this set
of variables are governed by the balance laws for mass, momentum, and energy and the thermodyna-
mic state relations for ideal gases. The balances can be set up in several frames: we consider their
form in the Eulerian frame, where the flow 1s observed at an arbitrary location in the flow field, and
the Lagrangean frame, where the flow is observed following an arbitrary material point of the fluid.
The independent variables for the Eulerian frame are thus the observer position x and time t, whereas
for the Lagrangean frame the label variable a and time ¢ are used. The usual choice for the label a 1s
the position of the material point identified by a at the reference time zero. The position of a material
point in the Lagrangean frame is denoted by X(a, t) and serves as transformation between the frames

x = X(a, t), a=X1(x1t),

where X! denotes the position at time zero of the material point, that is at position x at time ?
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(uppercase letters indicate dependent variables in the Lagrangean frame and lowercase letters are used
for the Eulerian frame). If the mapping X and its inverse X! are twice continuously differentiable,
then the partial derivatives in the Eulerian frame can be transformed into the Lagrangean frame and
vice versa. The gradient, for instance, transforms according to (Euler relations (Truesdell, 1954))
a 1 X, 0X, ¢
BRI ZEETTY 1
ox, 2J 87 Cone da, 0da, 0a, M
and
¢ J ax;tox;t @
2 T 5 bapybone 5 e’
da, 2 ox, 0x, 0x;

2)

where J denotes the Jacobian determinant

X, 0, 0%,

J = Les Eonw .
By on
da, day Ca,

3)

(Note that repeated subscripts imply summation and that &, is the permutation tensor.) Repeated
application of (1) or (2) leads to transformation formulae for second and higher derivatives. We will
need in particular the relation for the Laplacian, which is given by

1 X, 8X, & (10X, 8X, a) @

A, = € bom = A~ A — .
x 7 J M 8 da, das\J dag Ca, da,

The time derivative in the Lagrangean frame plays a fundamental role, because velocity and acceler-
ation are by definition given as

ox, av,
Va(a* t) = '?{7 > Aa(a5 t) = (’1t .
/ a 4 a

It transforms to the Eulerian frame according to

a ! P b
<5>a - (5) Fube) o= )

which is called the substantial or Stokes derivative. The transformation rules (1)-(5) enable us now to
set up the basic laws in both frames.

Mass Balance. Mass is conserved and this statement translates into

0
ar T ax, P (©)
for the Eulerian frame, where p(x, t) denotes the density. Transformation to the Lagrangean frame
leads to an integral of (6) given by

R@0) _

R(a,t) M

where R(a, 1) = p(x, ) for x = X(a, t). Equation (7) is therefore the mass balance in the Lagrangean
frame.

Species Balance. A mixture of n ideal gases is considered and its composition is described in terms of
mass fractions Yia, 1) = y(x, 1), x=X@, ) i=1,....,n Chemical reactions may occur and the Y; are
therefore not conserved, but may be consumed or produced according to a reaction mechanism
consisting of many steps. At this point we only need to know that the rate Q, of production due to
chemistry is a local function of the thermodynamic variables (no derivatives or integrals with respect
to time or space/label appear in the Q,). The balance for the mass fraction y; in the Eulerian frame is

then given by
Dy; 4 oy .
i I, + pg; =1,...

P i 6x,<p i ax) pgi,  i=1,....m (®)
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where [; denotes the Fickian mass diffusivity. Transformation to the Lagrangean frame is carried out
using (1), (5), and (7) and results in

0Y: 1 oX, 0X, © R3T. éX, 60X, 0Y;
ay, : 0X, 0( j ,_«1#‘>+Qi, i=1,...n 9)

e T
ot 2R, 7 da, da, da,

where R, = R(a, 0).

R, 0day @da, ca,

Momentum Balance. Newton’s second law leads to the balance equation for momentum. In the

Eulerian frame it appears as

Dv, dp Oty
P Dr ax, oy, [P (10)

where 1,5 is the stress tensor and f, is the external force per unit mass. Transformation to the
Lagrangean frame is straightforward and results in
v, 1 0Xy 0X, 0P ] X, X, 0T,y

e il RSP i e AR 1
3 = 2R, e da, da, das 2R Epicbone 5o Ga,, day + (b

where P(a, 1) = p(x, t) is the pressure and T, t) = Tap(X, 1) 18 the stress tensor in the Lagrangean
frame. Newtonian fluids satisfy the linear constitutive relation

v dvg 2 av,
— a YU Cs 70 12
T = M (axﬁ Tax, 30 ﬁx)) (12

between stress and rate of strain where u is the dynamic viscosity.

Energy Balance and State Relations. The first law of thermodynamics applied to a differential control
volume leads to the energy balance in the Eulerian frame. This balance can be set up in several
equivalent forms depending on the choice of the thermodynamic variables. For enthalpy h(x, f) it is
given by

Dh _Dp aq,

2o o — = 13
P "o TP o, (13)

The specific enthalpy for a mixture of ideal gases is composed of the enthalpies of the components

h=Y oy, (14

W\
-

where h; _is the molal enthalpy and M; is the molecular mass of the ith component. The molal
enthalpy h; in turn consists of the formation enthalpy hY and the sensible enthalpy

T

h, = h) + J dT' ¢, (T'), (15)
To

where ¢,(T) denotes the molal specific heat at constant pressure. The dissipation function @ is defined

by

ov,

o= T“"é}; (16)
and the energy flux g, consists of conductive, diffusive, and radiative fluxes
g4, = —kgi—pi%ﬂgi;+q5~ (17
The system of equations is closed if the ideal gas equation
p = pRT (18)

is included and the chemical sources Q; are specified. The energy balance in the Lagrangean frame can
be deduced from the first law of thermodynamics for a differential system or by transformation of the
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Eulerian form (13). The result is given by

oH 1oP 1 1 6Xﬁ6_)&£3ga_

o _ 1o e it 19
ot Ra R 2R08"‘”8""‘” da, éa, da;’ (19)

where

g ! X, 20X, 2,

LI LI i 20
RY = 2R, ‘e # 3g, Ga,, day (20)

is the dissipation function per unit mass in the Lagrangean frame. The basic laws were presented in
terms of composition y;, enthalpy h, density p, and velocity V. This set of variables is not always the
most convenient one and linear or nonlinear combinations of these variables are used later for the
treatment of turbulent flows with chemical reactions. For low Mach numbers it can be shown (Pope,
1985), by Taylor series expansion of the state relations, that chemical sources are, to the lowest order,
independent of pressure fluctuations and that the substantial derivative of the pressure in the energy
equation can be neglected unless strong pressure variations are imposed by unsteady boundary
conditions. Hence a set of thermochemical variables ‘P;(x, t) emerges for low Mach number flows, that
determines the state of the fluid mixture locally and these variables are governed by transport
equations (Eulerian frame)

Dy, d o, .
b ARG i) paA ., =1,...,1 21
Y ox, (P '6xa> + p4; L (20
or (Lagrangean frame)
ik ¢ 1 0X. éX, 0 Rl 80X, 60X, &Y, )
i e e nlel St . =1,...,1 22
dt 2R, CapyCone da, da, 6a5< R, dag ¢a, da, 0 : 2

The source terms g;(x, t) = Qi(a, 1), X = X(a, ) are not identical with the sources in (8) and (9). Their
structure depends on the particular thermochemical formulation or model employed for the local
description of the reacting mixture. The complete system of equations determining the local mechani-
cal and thermodynamic state consists now of mass balance, momentum balance, and scalar balances
(21) or (22) together with the relations between the y; and the thermodynamic variables. It can be
expected that [ is less than n + 1 for certain classes of flows. Non-premixed turbulent flames at low
Mach- numbers for instance can be modeled using a single conserved scalar (I=1 and @, = 0). This
is discussed in more detail in a subsequent section. The case of supersonic turbulent flows is dealt
with in a slightly different fashion.

22. Characteristic Functionals

A complete statistical description of a turbulent flow can be achieved if the characteristic functional
(see Hopf, 1952; Hopf and Titt, 1953; Lewis and Kraichnan, 1962; Foias, 1974; Vishik et al., 1979;
Constantin et al., 1985)

T 1
mld, v, @y,.... 0] = <eXp {'J dr [(p, d) + (v,v) + Zl Wi, w.»)]}> (23)
0 =

for variables in the Eulerian frame or

T 1
M[d, X, ¢1,-.., @] = <exp {i J dr [(R, d) + (X, x)+ Y (¥, (pi)]}> (24)
[¢] i=1

for variables in the Lagrangean frame is specified. The arguments of the functionals m and M are the
functions d(x, 1), v(x, 1), @;(x, 1) and d(a, t), x(a, 1), ¢ia, 1), respectively, which are square integrable in
the flow domain R x [0, T]. The expressions (p, d), etc., indicate the scalar product
(U, V) = J dxu,(x, Do (X, 1) (25)
R(r)

in the Eulerian frame and

(X, %) = J daX,(a, 1)x,(a, 1) (26)
R0)
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in the Lagrangean frame, where R(1) is the flow domain at time ¢ and [0, T] is the time interval of
interest. The angular brackets represent the mathematical expectation, which is defined as a functional
integral over the space of all realizations of the turbulent flow field (see Vishik et al. (1979) for the
definitions of the appropriate function spaces). This functional integration requires the existence of the
probability measure (see Daletskii (1962) and Skorohod (1974) for functional integration). For incom-
pressible flows and homogeneous boundary conditions, the existence of the probability measure has
been established (see Hopf and Titt, 1953; Foias, 1974; Vishik e al, 1979), but not its uniqueness.
For compressible and reacting flows this is still an open question. We assume in the following that the
probability measure for compressible and reacting flows exists. With this assumption we can proceed
to set up the transport equations for characteristic functionals following the method put forward by
Vishik et al. (1979). Noting that the characteristic functionals are independent of time ¢ and location x
and label a, we have to form functional derivatives (see Averbukh and Smolyanov, 1962) in order to
establish the dynamical change at a given time and location or label. The transport equations for the
derivatives of the Eulerian functional m can be obtained without difficulty (see Lewis and Kraichnan,
1962; Dopazo and O’Brien, 1974; Kollmann, 1987). The mass balance (6) leads to

~

d ém ¢ 5*m

2 S 27
2t odx. 1) ax, od(x, )dv(x, 1) @7

where 8/3d(x, ) denotes the functional derivative (Averbukh and Smolyanov, 1962) defined by

T om d
———h = —m[d + ¢h]|,=o. 28
deL s hix 0 = ol + okl (28)
Momentum balance (10) leads to

<l 3*m é 3*m Al 0T, L om (29)

3]

T od(x, 0onx 1) | dx, 8d(x, 00,(x, B0 1) | ax,  dxg ¢ ad(x, 1)

o~

where the external force per unit mass f, was assumed to be nonrandom and IT denotes the pressure
functional

T
Nid, v, ¢1,.... 01 = <P(x, 1) exp {If de[(p, d) + ]}> (30)
0
and T,; denotes the stress functional
T
Tyld, v, 0, ..., 0] = <r,,,(x, 1) exp {IJ dt[(p, d) + ]}> 3n
0
The stress functional for Newtonian fluids can be given explicitly in terms of m:
0 om J om ad  om
T,= —iu{ — ——— — =3y ] 32
i m <6x,, Ou,(x, t) + 0x, Ovg(x, 1) 37 ax, du,(x, t)> (32)

The viscosity u was assumed to be constant. The thermochemical variables ; governed by (21) lead
to (Kollmann, 1987)

¢ 3*m . 3m v 8 ¢ om
e o =i < : o U A0 s
3t 3dix, D3@y(x, 1) | 0xp 0d(x, D00,% 03,%, 1) ox, \U 0, Sy, )
d o om
+ig;| = . , j=1,...,1 33
) <i0(pl(x, 1) idoy(x, t)) dd(x, 1) J (33)
where the transport coefficient pI; was assumed constant. The sources (¢, ..., ¢,,) appearing in (21)

become operators acting on m. If g; is not a polynomial in the g; then it may turn out to be a
pseudodifferential operator (see, for instance, Taylor, 1974) on the functional level in (33). The
functional equations for the Lagrangean functional M are obtained in similar fashion as shown by
Monin (1962) for the case of incompressible turbulence. Mass balance (7) leads to the equation

oM i .0 o é 4 é 0 oM

(34)

e tim— o ¢ ¢ ¢ ° 0T
5d(a, 0) 6 #me MM aar 5x,(a’ 1) dajy 5x,(a”, 1) daf Ox,(a*, 1) dd(a. 1)
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where the limit is carried out for a’, a”, a* approaching a. The mass balance (7) is not an evolution
equation and thus (34) is not of evolution type. The balance of momentum (11) leads to
o? 5°M ¢ ) ¢ d oIl

— _ 1, , lim — -
7 odia, Oox.@ 1) L M oo S (@', 1) dal 0x,(a”, 1) da

3 5 a o ¢T, oM
L e fim o O S T 35
+ 28gyfone 1M da, 6x,(a’, 1) daj, dx,(a”, 1) da, i o

6d(a,T))
and the thermochemical balances (22) imply that
¢ M i . @ é ¢ o
S M e Eaﬂ',-géryw lim A R i AT Sv (a5
ot 4d(a, 0)op;(a, 1) 2 da, dx,(a', 1) dag 0x4(a”, 1)
0 .0 0 é é T |
X =\ Dilim o A Sx.(a**. 1) fa.
day daf dx (a*, 1) dar* ox,(a , 1) 0a, dp(a, 1)
d 0 oM
0l ——, o, V> i=1,....,1L 36
0 (ié(p,(a, 0 idgya, r)) 3d@o0)’ (36)

The transport coefficients D; = R*T;/R, are again assumed constant in order to avoid unnecessary
complications. Variable transport coefficients can be dealt with, but the resulting equations become
rather unwieldy.

The transport equations for the Eulerian and the Lagrangean functionals exhibit several properties
of fundamental importance. First we note that the equations are linear in contrast to the physical
balances, which are highly nonlinear. Furthermore, the system of functional equations is closed in
both Eulerian and Lagrangean frames if we consider the first functional derivatives of m or M as
unknowns. This follows from the fact that both the stress functional T,; according to (32) and the
pressure functional IT can be expressed in terms of m or M. No explicit form for the pressure
functional can be given, but the thermochemical relations imply that the pressure can be expressed in
terms of p and ¥, ..., ¥, and thus there exists a relation between I1 and m or M. Finally, we outline
a procedure to establish the characteristic functional m or M from the solutions of the functional
equations, which provide the first derivatives of m or M. We note that functional differentiation and
appropriate combination of the solutions of the system of functional equations (27)-(33) or (34)—(36)
lead to a Poisson-Levy equation (see Feller, 1986) for m or M. The Dirichlet problem for this
Poisson—Levy equation can be solved analytically and the result shows that m and M can be
represented as functional integrals with respect to a Wiener measure (see Theorem 3.5 in Feller
(1986)).

2.3. Finite-Dimensional Characteristic Functions and pdfs: Eulerian Frame

The functional equations contain all the statistical information on the turbulent reacting or nonreacting
flow. In particular, the transport equations for finite-dimensional characteristic functions follow from
them. The governing equations for finite-dimensional pdfs are thus determined also, because pdfs are
the Fourier transforms of characteristic functions. The derivation of the equations for finite-dimensional
characteristic functions are outlined for the single-point case. We note first that the generalized
argument functions

4 = do(x — X0t — °),  v*=06,0(x —x2)3(t —1°),  @F = go(x —x)3(—1%), (37

where d, ,, ¢; are parameters independent of x and ¢, produce the single-point characteristic function
m, when applied to m,

md*, v*, ¥, ..., o¥] = my(d, 0, ¢y, ..., ¢ x% 1°), (38)

and m, is, according to (23), defined by
!
m,(d, 6, ¢y ..., 3 x% %) = <exp {i[ﬁp(xo, %) + 6-v(x% %) + Y G(x°, lo)}}>. (39)
j=1

Variational derivatives reduce to partial derivatives with respect to the parameters d, v, ¢;, as for
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instance in
om

0 4 A
m[d*’ D*’ ‘Pi's e (pl*] = -—mx(ds g, P15+ (UY xO’ [0)' (40)

od

Derivatives with respect to x and ¢ appear differently for m and m,. From the definition of the
functional derivative (28) it follows that

& om . [op (T ]
dtodx, 1) ’<57("’ ) exp {' L d [(ﬂ, d) + (v, 0) + J; W, wj)]}>, (1)

whereas it follows from (38) that

om, .~/ 0 . .. /0v, )
=i <5f%(x°, r°)exp{z[---]}> . <af (x°, ) exp{:[~-]}>
&L /oY .
+i Z j<5t—é(x0’ t°)exp{z[--~]}>, 42)
=1

where
1
[+ = dp(x®, 1) + 6-v(x% %) + 3, Bx° 1)
j=1

holds. Using (40)—(42) it is easy to show that the following relation holds for time derivatives:

om, , ¢  om o om L3 om
T T b —— oo 8
ar° a1° 8d(x°, 1°) [x} + 0 010 v, (x°, 1°) [+] + JZ‘I @i 50 3g,(x°, 1°) [+]. (43)

where [*] = [d*, v* of, ..., @¥]. Note that differentiation has to be carried out first and then the
arguments [+] are applied. Furthermore, note that standard and functional differentiation do not
commute. Similarly it follows for the substantial derivative that

om0 Pm &0 om
a° jad | ox%iadido, (i8d(x°, 1°)2 x? idv,(x°, t°)

v f 8m N &m .
059305 16d(x0, 0)id0p(x% 1) * xC ibd(x°, (°)idv,(x°, 1°)iduy(x°, 1°)

i LI e &%m N é 33m [
1 - = 0 O\ *
P2 300 A0, )i, 1) OxC idd(x°, ()idv,(x%, V)idei(x", 1°)
(44)

[(+]

j=

holds. The transport equation for m; can now be deduced from this equation by evaluating the terms
on the right-hand side of (44) with the aid of (29) and (33). The result can be stated in the form
(superscripts of x°, t°, and hats are omitted from now on)

gom 8 Pm ¢ 9 9 \omy
o icd T ax,iadido, o Pi\idg," T idgy) iod

) o, ) 0 01, . o é a;\
= —id <p2 = m1> + w“<(_65 + E)f + pfa>m,> + IJ; (pj<87<prjax!>ml>, 45)

1, = exp {i [dp(x, )+ vev(x, t) + i (X, f)]}-

where

The transport equation for the pdf
fild,v, @1, 05X, t)dd-dv-de, ...do,

=Prob{d < p(x, t)<d+dd, v, <v,(X, 1) < v, +dv,, @;<Yi(X, H<g+do,a=1,..., 3, j=1,..., 01}
(46)
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can be obtained by Fourier transformation of (45) or it can be derived directly from the basic laws
(see Lundgren, 1967; Pope, 1985; Kollmann, 1987). It can be given in the following form:

o oh o, 0
d ot + dvﬂaxﬁ + ;Z'x a(pj(dqj((pl""’ o) f1)
om0 (ot NNy D ()
T od <p Bx,,f> + dv, <<6xa 0xg pf“>f> ,Zl d; <8xt, (pl"l 6x,,>f>’ (47)
where
. 1
f=d(p(x, 1) — d)3(v(x, 1) = v) H] (%, 1) — @) (48)

is the Fourier transform of ;. The equations for higher-dimensional (multipoint) characteristic
functions and pdfs can be obtained in the same manner (se¢ Lundgren, 1967).

The equations for the characteristic function m, and the pdf f; share several important properties.
They were deduced from the closed and linear equations for derivatives of the characteristic func-
tional, but they themselves are not closed at any finite-dimensional level. Viscous and diffusive terms
as well as the pressure-gradient introduce the two-point characteristic functions or pdfs into the
single-point equations and this property carries over to higher-dimensional equations. Hence, the
equations for finite-dimensional characteristic functions and pdfs are always indeterminate.

2.4. Finite-Dimensional Characteristic Functions and pdfs: Lagrangean Frame

The transport equations for finite-dimensional characteristic functions and pdfs in the Lagrangean
frame can be derived using the same ideas as for the Fulerian frame. There is, however, sufficient
difference in detail to warrant a brief discussion. We consider again the single-point case. The
generalized argument functions analogous to the Eulerian case would be

o= dola —a%)3(0), Xt =R —a%s 1), o =¢d@- a%)(1 — 1°), (49)

where the parameters d, &, ¢; are independent of the label a and time t. We note, however, that d* is
taken at the reference time zero, because the actual density can be expressed in terms of the initial
density via the integrated mass balance (7). The characteristic functional M taken at the generalized
arguments (49) turns out to be the single-point characteristic function Ml(ﬁ, R, Byy s Pp)- T IS
important to notice at this point that M, does not contain the information on the statistics of the
velocity fluctuations, whereas the characteristic functional M[d, X, @1, ..-» @] incorporates all statis-
tical properties of velocity. Since the velocity is a quantity of primary interest, we modify the
argument functions x* as follows,

o% 0

% = 2,508 — a%)d(t — 1°) + = 5 d(a — %) 750l — t%), (50)

* ’ ot

and regard 0%,/0t =0, as a parameter like d. Note that choosing the argument function x,(a, t) for the
characteristic functional M implies the choice of the derivative 0x,/0t. The derivative éx,/ét would be
a redundant argument on the functional level. However, if we choose x,(a, t) only at a single point as
in x*, then the derivative dx,/0t is not determined and derivatives become unknown variables. Taking

the characteristic functional of the modified arguments now leads to

(@% %) + i ¢;\¥(a’, t°)}}> (51
J=1

which is indeed the desired characteristic function M,(ﬁ, %,0, @0 B of density, position, velocity,
and thermochemical scalars in the Lagrangean frame. The characteristic functional M, involves,
strictly speaking, two time levels, namely zero and t°, but for t° » 0 all correlations with quantities at
the initial time zero will have died out and, therefore, M, is considered a single-point characteristic
function. We note a fundamental difference between M, and its Eulerian counterpart m,. The Eulerian
function m, depends on the probabilistic variables (d, 0, ¢y, ..., ¢) and parametrically on (X, 1),

ox
M[d*, x**, of, ..., 0F] = <exp {i [ﬁR(ao, %) + £,X,(a% %) + 0, at“
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whereas the Lagrangean function M, depends on the augmented probabilistic set d, %0 ¢r.eer @)
and parametrically on (a, t). The time rate of change of the characteristic function M, can be
expressed in terms of the functional derivatives of MI[d, x, ¢, ..., 0]

o M, oM, & 5M 5*M

! )
a0 ed  Tticdios, o2 isd(a®, 0)idx,(a’ 1) [ +1 2 955 5aia®, 0)idgya®. ©)

A

(<], (52)

where [*] denotes the arguments given by (51). The dynamic equations (35) and (36) for the functional
derivatives of M can now be used to eliminate the time derivatives on the right-hand side of (52). The
result can be given in the form (superscripts and hats are omitted from now on)

aéM, | M, < é a \ oM,
~ a7 YaTrgs —lZ(Pij A A | T
ét idd iddidv, = i0g, ido,) iod
é ] ¢ 0 a1l
da, dxy(@’, t) da;, dx,(a”, 1) day
¢ ) 0 d o7, ‘M
T L A
da, ox,(a', 1) dag, ox (a”, 1) da, icd
0 ) ¢ o ¢
da, dx (@', 1) Gaj dx,(a”, 1) dag

x | D; lim i 5* ¢ 0 i oM [*] (53)
. ) *
T da¥ dx (a*, t) a** dx4(at*, 1) du, dgia, ) ’
B YN 7 ¢ i

[*]

= iv, { — 3825, En0 1IM

+ $€4cEome 1M

i
— ) Piapyono iM
A

where the limits are carried out for the labels a’, a”, a*, a** approaching a. The right-hand side of (53)
contains the nonclosed terms generated by pressure gradient and viscous transport. The transport
equation for M, can be considerably shortened (but not simplified) if a mixed Eulerian/Lagrangean
form of the basic laws is employed, which is given by

R, = J6P+J8T"”+RF
°a - Tex, Teéx,
and
RNJ—RQJFJa Rr,
o T T Tax \Tex,)
It follows that (53) can be recast as
¢ oM, | M o é ¢ \ M
?_._1—1)617—.1—1—12(ij] *,;f s T _,)1
ot iod iodicn, = i0g ide,) idd

0P T,\ - M ! 2 W\
=i —J BAM ) — iv Fy— - + i {J— (R, |\M), (54
’“a<< (‘:Xa * ! 6Xﬂ) > el icd " IJ; (pj< 6Xa< j(‘:Xu> > ( )

. i
M =exp i{R(a, 0)d + X,(a, )x, + V(a, v, + Y Wja, t)(pj}
=

where

and therefore R
M, = (M)
holds. The transport equation for the Lagrangean pdf F; can be deduced from (54) using a Fourier
transform. The result can be given in the form
dF, aF, !

fal
—— + dv,— — ;
d 6[ + Uq axa + ]Zl 5(pj [dQ_]((ph ’ (Pl)Fl]

d oP 8T, \ A oF, & 0 é AW\ -
=——{({-J J VPN —dF, =L - Y —{J=—| R 2| F ), 55
601<< ox, " ax,,) > a0, " & a(p,.< axa< ’axa> > 3)
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where F is the Fourier transform of M and J denotes the Jacobian defined in (3). Tt is instructive to
compare the transport equations for the Eulerian pdf (47) and the Lagrangean pdf (55). We know
already that f; and F, are not equal due to different sets of independent variables. The left-hand sides
of (47) and (55) have the same structure, but the right-hand sides show two subtle differences. The
volume-expansion term is absent from (55) and the Jacobian appears as a factor of the pressure-
gradient and the viscous-diffusive terms. Both differences can be traced back to the definition of the
generalized argument functions (51) of the characteristic functional, where d(a,0) is taken as the
density at the reference time zero. If we define

d* = dé(a — a,)o(t — 1°)
instead, we obtain the pdf F¥(d, X, v, @1, .., @ &, t) governed by

oF, oF

d’a_l_ + dv,

N
—[dQ;
ox, + j; 5(,0,'[ Qi@ --o» o) F,)

N AN P 0Ty & R SV I RV A
LA S G LA ) PR W O LT LA
E‘d< ax.” > 2, <( axfax,,) > dFzy ~ X e<pj<axa( fax) > (56)

which has exactly the same structure as in the Eulerian case (47). The relation between the Eulerian
solution fi(d, v, @, ... @2 X, t) of (47) and the Lagrangean solution Fi(d, X, v, @1, .- @3 &, 1) of (56) is
discussed in detail by Pope (1985) and Kollmann and Wu (1987). It is shown by Kollmann and Wu
(1987) that F, and f, differ only by a factor independent of the arguments of F and f,. This
concludes the discussion of the exact pdf transport equations and the following sections are now
devoted to the construction of closed pdf equations.

3. Pdf Methods

In the previous section if was shown that the transport equation for the pdf (which describes the
mechanical and thermodynamic state of Newtonian fluids in turbulent motion at a finite number of
points in space and time) follows from the determinate and linear equation for the characteristic
functional. The equations for finite-dimensional pdfs and characteristic functions are, however, indeter-
minate and the closure problem must be overcome in order to obtain a solvable set of equations. In
this section the properties of the closed and nonclosed terms in pdf equations, as well as methods of
closure, are discussed.

3.1. Properties of the Single-Point pdf Equation

The pdf fi(d, v, @1, @5 % 1) is governed by the transport equation (47), which has the form of a
conservation law
¢ d 2 d e 0 57
— P _— (F)=
6t( If,) + axm( v f1) + kzl ay“( K) 2 (57)

where y, = {d, v, @y, ..., @y represents the set of probabilistic and independent variables while F,
represents the corresponding fluxes. The solution f; of this equation must satisfy two fundamental
conditions,

fi=0 (58)

and
jdy fiyx, =1, (59)

in order to qualify as a pdf. Dividing (47) by d and integrating over the probabilistic variables y leads

to
d

Hence, (59) is preserved provided that initial and boundary conditions conform with (58) and (59).
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Multiplication of (47) with expressions of the form

1+4

n (v — <o)
k=1

(o, = 0 is an integer) and integration over the range of the y, k=1,..., ([ +4), leads to the transport
equations for the statistical moments.

The left-hand side of the pdf transport equation (47) contains the convective transport of f; in
physical space and the convection in the space spanned by the thermochemical variables ¢, ..., @
The latter group

LG
——(dg (@1 Pm1
,; aqo,-( g;le om)f1)

is closed as long as the source terms g; of the scalar transport equations (21) are local functions of the
scalars ¢, ..., ¥;. These sources may be highly nonlinear (as in the case of combusting flows) and can
be dealt with rigorously in the pdf and characteristic function equations in contrast to moment
equations. Their basic property is apparent from the way q; appears in the terms: dq;(@y, .-, @) has
the role of a convection velocity in scalar space analogous to the velocity v, in physical (Euclidean)
space. If ¢; <0, then the pdf is moved to higher values of ¢; in accordance with the properties of a
source term in (21). If g; is furthermore constant, the shape of the pdf remains unchanged during this
convection along the @-axis in the absence of other effects.
The right-hand side of (47) contains the three nonclosed terms. The term

o/ Jov, N\ 8/ ;v
5&<" be>'&1{<” ox,

represents the effect of volume expansion on the pdf. This term is zero if density is constant for
material points, because

p=d,v=u,¢j=(pj,j=1,...,l>f} (60)

Dp av,

Dt pé‘xa‘

This case includes stratified flows (where p may change with label a but not with time 1) and
incompressible flows (where p is constant in space and time). The relative rate of volume expansion is
nonzero in turbulent reacting flows and in turbulent flows at transonic and supersonic speeds. The
conditional moment in (60) can then be viewed as a convection velocity along the density axis.
Positive rate of volume expansion leads to negative convection speed and the pdf is moved toward
jower density in accordance with the mass balance. The second group of terms on the right-hand side
of (47) represents the motion of the pdf in velocity space. The effect of the pressure gradient on the
pdf can be elucidated in some detail for the special case of incompressible flow and for points x far
away from boundaries. Pressure is then determined by a Poisson equation

dv, dvg
x5 0Xq

Ap=—p
whose solution
d dv, OV
p(x, 1) = —ij Y =>2
4r ) |x — ¥l 0y 0Ya

allows us to express <(ap/axa)f > as follows (see Hanjalic and Launder, 1972; Lumley, 1978; Pope,
1985):

(61)

A2 gyl oyl e
<6xaf>— pPe jdyaxah& yl ayﬁayro,;(y}by(y)f) (62)

The expectation in the integrand involves the two-point pdf f5(...; X%, ¥, 1), since

Cuply, DUAY, nf> = Jdv‘z'v‘ﬂz’v‘fb’z(d, U, @ps e O VXYL D),

where the values of v(y, t) are denoted by v'?. From the fact that pressure is related via a differential
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equation to velocity, it follows that the pdf flux due to the pressure gradient cannot be expressed in

terms of f;. It involves necessarily the two-point pdf fs
The external force f, per unit mass is considered for two cases: first, the nonfluctuating case where

0

av,

appears in closed form, and, second, the fluctuating case where the statistical properties of f, must be
specified in order to arrive at the proper form for this term. 1f the external force corresponds, for

instance, to a Wiener process, then f, is not defined and the momentum balance must be written as a
system of stochastic differential equations containing

fa d[ = ga[i dWﬁ(‘)a
where g,; dWylt) denotes the velocity increment and dWj(t) denotes the increment of a vector Wiener
process (see Keizer, 1987) with zero mean and unit variance. The pdf equation then contains

1 &

5 m(gaygyafl 2

R 0
(Pl = £l 0 ()
v,

d
—('?—va <Pfa.f> =

where 1g,.9,5 is the tensorial diffusivity in the velocity space. This aspect of the pdf equation is
discussed in more detailed in Section 3.2. The remaining terms on the right-hand side of (47) represent
molecular transport in velocity and scalar space. They can be rearranged in such a way that their
effect on the pdf becomes more transparent. For the sake of simplicity we assume, for the moment,
that al; = pl' = = constant are valid. Simple manipulations lead to

o Jon, N\ & ¢ /¢ v, G of: é év of
I .’ A A N N pelld - Yo+ — Ha _ A
év, <8xﬁ f> ,Z‘l ”,(pj<€>c,j (p ’Bx,,f>> dxg (p ’6x,,>+ 0xg <<'u(?x,, T”) du,
8 op of a2 \ Rk 3
O lar 2N o L ) a5 il
T ax <" 2%, ad> s 0 G\ ax,”
L@ o\ L @ .
_ 4 — O
j; v, 09, <Taﬂ5’xﬂf> L i wf?

L2 ¥, dp Lot AV, v, ,
— Y T f) — Y T A2,
J; dop;od <p dxg Oxg f> J; '@, <p dxg Oxy f>

6

dv, Ov,
o= H 0x, 0xg

where
o

and
r oV, oY,

®. = —_—
. dxy 0xg

J

denote the rates of dissipation. The essential properties of the molecular transport terms are contained
in the underlined expressions. An inspection of those terms shows that molecular transport affects the
pdf f, differently in physical and velocity—scalar spaces. The distribution of the pdf in physical space
is smoothed exactly the same way as velocity and scalars are smoothed by viscous and diffusive
transport. This contribution is, however, negligible for turbulent flows at high Reynolds and Peclet
numbers. The underlined terms representing transport in velocity-scalar space ar¢ of the leading order
in high Re/Pe-numbers flows and affect the pdf analogously to the time-inverse heat conduction
equation (i.e., heat conduction with negative diffusivity) given by

o __ @&
ot du,dvg

(Daﬁfl )a

where
Dy = Pylp = dv=9%¥ =0
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is positive definite (note that the trace of @, is the dissipation function). The initial-value problem for
this equation is not well-posed and it follows that closure models for the molecular transport terms
cannot be based on this type of differential equation. The effect of the molecular transport terms in
velocity—scalar space is in essence to reduce variances and convariances while leaving normalization
and mean values unchanged. The pdf in freely decaying turbulent flows will approach a Dirac-
pseudofunction due to the molecular transport terms acting in velocity—scalar space.

3.2. Formulations

The presence of nonclosed terms in the transport equations for finite-dimensional pdfs requires
additional information in order to arrive at a finite and determinate system of equations. This closure

problem can be tackled in several different but not necessarily equivalent formulations. Three ap-
proaches are outlined, two of which have been the basis for successful modeling efforts.

Formulation I: Pdf. The nonclosed terms are analyzed as fluxes of the pdf in the multidimensional
space spanned by velocity and scalar variables. The exact form of the nonclosed terms is given
directly by the transport equation (47). The essential step in the analysis is the determination of the
structure of the set formed by all realizable states in velocity and scalar spaces. The velocity space is
usually a three-dimensional Euclidean space, but the scalar space can possess intricate boundaries. In
particular, chemically reacting flows lead to a description of the local state that requires many scalar
variables. The range R of these variables is bounded and the boundary dR of this range is determined
by complex relationships (see, for instance, the case of CH, combustion (Chen et al., 1989)). However,
the following fundamental restrictions are imposed on the possible forms of the boundary ¢R of the
scalar range: The boundary ¢R is an orientable, singly connected, and piecewise smooth hypersurface
(dimension [ — 1) that encloses a convex body of nonzero l-dimensional volume. The enclosed volume
does not have to be bounded. The condition of convexity is relevant for the mixing models to be
discussed later. The existence of boundaries in velocity or scalar space imposes a condition on model
expressions for nonclosed fluxes: the flux component normal to the boundary ¢R (where the normal
exists) must be negative or zero if the normal is defined as positive outward (which is only possible for
orientable surfaces). Then

{
Y mFy <0 y,....yp on R (64)

k=1

If this condition is violated, unphysical states becomes accessible.

Formulation 1I: Characteristic Function. Characteristic functions are the Fourier transforms of pdfs
and therefore an equivalent formulation under mild conditions. They have been used rarely in the
treatment of turbulent flows (see Kollmann, 1987). Characteristic functions possess several interesting
properties which can be exploited for the construction of closure models. For the sake of simplicity,
the case of a single probabilistic variable is considered. The distribution function Fy(y) and character-
istic function m,({) can be decomposed uniquely into the sum of three distinct contributions (Jordan
and Lebesgue theorems (Lukacs, 1970))

F,(y) = aFg(y) + bE(y) + cF(y), abc>0 a+b+c=1,
and
my(0) = amy(Q) + bmyc({) + emy(),
where F, is a step function, F, is absolutely continuous and has a derivative everywhere, and F; is
continuous but singular in the sense that its derivative is zero nearly everywhere. The decomposition
of the characteristic function is completely analogous to the distribution function; my is the character-
istic function of the discrete distribution, hence it is almost periodic (see Lukacs, 1970)
lim sup |my| = 1,
lq—ogn
m,. is the characteristic function of the absolutely continuous distribution, hence

lim m,({) =0,
gl =0
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and m, is the characteristic function of the singular distribution, where the limit of m({) as |l — oo
can be any number between zero and unity. The singular part of distribution and characteristic
functions is tacitly omitted for flows at finite Reynolds numbers. The pdf is then given as a
generalized derivative of the distribution function and the pdf and characteristic function are indeed
equivalent. However, the analysis of turbulent flows in the limit of infinite Reynolds number leads to
the investigation of subsets of the flow ficld, which have zero measurc and fractal dimension (see
Mandelbrot, 1974; Levich er al., 1984). This analysis is based on the fundamental but unproven
assumption proposed by Kolmogorov (see Chapter 8 of Monin and Yagiom (1975)), that the rate of

dissipation
1 duvg dv
@ =(nerl o’
Re &x, 0xy

becomes independent of the Reynolds number for Re > 1 and approaches a nonzero and finite limit
value as Re — o0. The rate of dissipation is dominated by the enstrophy Q? = w,m, (density is taken
here as constant)

N2

(e> = (Re™ Q%) +

(?xa(?x; (Re™! v 05

because the difference with (&) is only a transport term. Hence, the instantaneous rate of dissipation
is concentrated on subsets of the flow field, where enstrophy becomes unbounded as Re —» oc. The
values of ¢ are (for this limit) restricted to zero nearly everywhere and to infinity on a set of measure
zero, such that a finite and nonzero mean value exists. It is easy to construct a simple example for
such a random variable. For instance, the discrete pdf

1 1
file;Rey =11 —5— 3(e) + —— (e — Rede)), 0< &)<,
Re Re
or the discrete characteristic function
1
m(;Re)y=1— ﬂ(l — expli{{e) Re})

has the mean value (&), which is independent of Re, and the variance {&'*) = ¢e>*(Re — 1), which is
proportional to Re. Letting Re —» oo a random variable is produced that assumes the value zero
with probability one, but has nonzero mean <¢) and unbounded variance. Pdfs, such as the one
constructed in this example, are, however, rather awkward to handle and are, therefore, not suitable
for the analysis of variables defined on fractal sets in the limit of infinite Reynolds number. Char-
acteristic functions are then the superior tool because they allow the explicit treatment of singular
contributions which cannot be ruled out a priori for the limit of infinite Reynolds number. Further
properties of characteristic functions can be deduced from its definition. Characteristic functions are
always bounded and continuous in contrast to pdfs which may be unbounded or pseudofunctions.
Since characteristic functions and pdfs are related by Fourier transformation, results obtained in one
formulation can be translated into the other if both satisfy the conditions for Fourier transformation.

Formulation I11: Langevin Equation. Single-point pdf equations can be simulated under certain
conditions by an ensemble of notional particles, whose dynamics are governed by stochastic differ-
ential equations. This approach was developed by Pope (1985) and is essentially based on Markovian
stochastic processes. We outline the basic ideas and derive the pdf equation for this approach. The
Lagrangean point of view is adopted and the basic laws for a material point a are set up in mixed
Eulerian/Lagrangean formulation:

X,

=V, 65
ar f (65)
JR av,

B _ _Rri= 6
ot ox,’ (66)
v, 1 0P 13Ty,

2= — 4 F (67)

&~ RX, RX,
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v, 1o [,
ai_ 1 % |pii . i=1,...,L 68
a Raxa< 'axa>+Q” ! o

The right-hand sides of the basic laws (66)—(68) are split into expectations and fluctuations as follows:

a-R—A(R V) + B R oV
a " 0X,)

av. oP T,

“x_ A (R >, BR, —. & F ),
= AR P, (T CED) ( XX F)
oY, é oV

ZJ— A(R . — | b,—~ i=1,.... L
P A ,<‘Pk>)+Bj<R,aXa<Djaxa>>, =100

The terms denoted with A, A,, A; represent the deterministic part and may depend on expectations
and the dependent variables R, V,, ¥, The B, B,, B; represent the random parts, which depend on
fluctuations such as V'/dX, (which cannot be expressed in terms of the dependent variables at a
single label a or observer position x) in addition to expectations and the dependent variables R. V.,
;. Hence, the deterministic parts are given by

A

= —R
A X,

1Py | 1 KTy

= ———+ -7 F,

A= —pax, TR ax, T
1 0 e 9

AJEE—&:(DJ'W:T>+Qj(qll""’qlh R),

where D; = RI; = constant and the sources Q; were assumed to be local functions of R, ¥,, .... ¥,
The random contributions contain all the fluctuations that cannot be expressed as functions of the
dependent variables; hence

p= R
=X,

= “ROX, R,

B 1 ¢ D@‘F}
iTRax,\'8X,)
Note that the random parts have the structure of additive (such as F)) and multiplicative (such as

cP'/0X,) coloured noise (see Soong, 1973; Lindenberg et al., 1983). It follows that the system (65)-(68)
can be written in the form

"

cY; oW,
= AV, V) + B(Y, <Y>)‘Tt*, (69)

where Y= (R, X, V, ¥, ..., ) is the vector of the dependent variables and W, is a random differenti-
able vector representing all the additional unknowns contained in B, B,, B We now relax the
conditions on the random processes W, and only require that the increments of W, are bounded. The
relations (69) must now be regarded as a system of stochastic differential equations (se€ Pope, 1985)

and appears as
d);:A,dr+Bjkdm, j=1.., 0+ (70}

This system is solvable if the initial conditions and the processes W are specified. For turbulent flows
these processes are, however, not known unless the characteristic functional has been determined.
Hence we investigate, in later sections, random processes that are capable of simulating some (but not
all) of the properties of the fluctuations occurring in a turbulent flow. It is shown that specifying such
processes is equivalent to constructing closure models for the pdf equation (56). In order to establish
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this equivalence and possible restrictions on the pdf equation for this case, it is derived for the
solution process of the system (70) of stochastic differential equations. This derivation cannot be based
on a straightforward time differentiation because dW,/dt does not necessarily exist. We proceed
therefore in a different manner following Soong (1973) for the case where W, is at least continuous.
The single-point pdf Fi(d, X, V. @1, ..., @138, )= Fi(y1s-os Viers a0 satisfies the fundamental relation

Fi(y;a,1)= jdy’Ff(y’; a tly;a, 1+ ANF (Y, a, t), (71)

where F¢ denotes the pdf of Y at (a, 1 + A1) conditioned upon Y =y at (a,1). The conditional pdf F{
can be expressed in terms of the conditional characteristic function M{

1
Fi(y;a, t + Af) = o jdy’ exp(—iy;ya)Mi(y; a, tly;a, t + Ao

If all moments of finite order exist for the conditional pdf, then Mj is differentiable at the origin and
can be expanded in a Taylor series at the origin. Using the well-known relation between moments and
the derivatives of the characteristic function at the origin, we obtain (L = I+ 7)

0 « L (—1)"’ o ‘ .
Fl(y’ a, t+ At) = Z z ]-—I B _7y"j 1hn|"'nlAF1(y; a, t))
n =0 i

n =0 j=1 nj! Gy;

Moving the first term of the series to the left-hand side, dividing by At, and letting At — 0 leads finally
to the pdf equation

(=1 @

s o L
oF, & T H L (via 0F(ya 0} 72
{ "IZO anzo }1—:-11 n}, (?y;j { 1 ,(y ) l(y )) ( )
where
I
oy <FI (Ya, ¢ + AN = Yfa, 0 Via, ”=y> "
i=1
and
H = lim ll'i_"' (74)
mUT o At

are called the derivate moments of Fj. The validity of the pdf equation (72) hinges on the existence of
the moments H, ..,,. We restrict ourselves to random processes in (70) such that all derivate moments
exist. Then there are only two possibilities for the order of the pdf equation (72) (see Theorem 7.2.1
Soong (1973)): it is two orf infinity. Only the first case, corresponding to all A, ..., with Y5, n,>3
being zero, is of interest. The pdf equation for this case follows from (72) as

oF, ¢ &

a T, {Hj(y;a,0F(y: 2,0} = TN {Hly: a, )F,(y: 3,0}, (75)

which has the same structure as the classical convection—diffusion equation. An important example
for the random processes W is noted. If the W, are Wiener processes, then the system (70) is of the Ito
type. The increments of W, satisfy (see Pope, 1985; Keizer, 1987)

(AWi(a, 1)y =0
and
(AW, (a, nAW(a, 1)) = 2Dy (a)t.
The system (70) now allows for the explicit calculation of the derivate moments H, ..., in terms of
the coefficients of (70) and the properties of the Wiener process (whose increments are independent of
Y). It follows (see, for instance, Chapter 7.3 in Soong (1973)) that

HJy;a,t) = Aly;a. 1) (76)

and
Hkl(y; a, t) = Bkm(y’ a, t)Dmn(a)Bnl(y; a, [) (77)
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hold. The pdf equation (75) is now solvable, in principle, if initial and boundary conditions are set up
properly. It is well known (see Soong, 1973; Keizer, 1987), that the pdf equation (75) represents a
Markovian process if W, is a Wiener process.

The conditions on the W, are now further relaxed by only assuming that the increments of W, are
bounded. We consider jump processes independent of the continuous random processes acting on the
Y,. The pdf equation for this case can be deduced from (71) (see Pope, 1985). All that needs to be
done is to set up the transition pdf F{ for jump processes on the right-hand side of (70). If we denote
by At/t the probability for a jump during the time interval At and denote by T(y', tly, t + At) the

pdf for a change of Y from y' to y if a jump occurs, then it follows that the transition pdf is given
by

, Aty LA
Fi(y';a, t + Ar = 1—7 O(y—y)+7T(y;a,tly;a,r+At)- (78)
Then (71) leads to
[’}Fl l ’ ‘ /
e dy F,(y;a, )T(y;a, tly;a, 1) — Fi(y;a. 1), (79)

Note that T can be regarded as the time scale of the jumps. Since continuous and discontinuous
changes of Y are mutually exclusive, we can add the corresponding contributions to the change of the
pdf and obtain the pdf equation for the system of stochastic differential equations

dY,= A; + By dW, + dJ;, j=1..,0+7), (80)
where dJ; is the increment due to the jump process, as follows:
oF, ¢ o 1 , ) ,
ot (',‘yj{HjFl}:m{ijFl}+r{jdy Fl(Y)T(YW)—Fx}' (81)

This transport equation is solvable if initial and boundary conditions, as well as the properties of the
continuous and discontinuous random processes, are specified.

3.3. Closure Models for the Pressure-Gradient Flux

The pressure gradient induces the flux

op » op’
F,={(—/)=
* <6xa f> <6xa

in velocity space. The flux due to the fluctuating pressure gradient cannot be expressed in terms of the
single-point pdf and therefore requires a closure model. It was shown in Section 3.1 that the pressure
gradient for incompressible flows depends on the velocity at all locations in physical space, and,
furthermore, it can be shown (see Hanjalic and Launder, 1972) that the correlation involving ép'/ix,
consists of three parts given by

TG
p=d,v=l),q'lj=([)j>fk+(§rxp>_f1 (82)

ra

ap’ _ _pj‘dy 0 ( 1 )%ﬁv;_pj‘dy(’,(‘ 1 »)6(13,25&4_*8”(,‘)’ 83)
ax, 4n ox, \Ix —yl/dy, dyy 4n ax, \Ix —yi/ &y, 0y 0Ox,

where H(x) denotes the harmonic function required to satisfy the boundary conditions. The first
contribution in (83) is called the “return to isotropy,” the second contribution is called the “fast
response” and the last boundary term (the terminology was introduced in the context of second-order
closure schemes (Hanjalic and Launder, 1972; Lumley, 1978). The most advanced closure for (82) was
developed by Haworth and Pope (1986, 1987) for incompressible flows with the total conditional flux
including (82) and the viscous dissipation. No closures for the boundary term in (83), which is
required for wall bounded flows, have appeared so far.

The Closure Model of Haworth and Pope (1986). This model incorporates both the pdf flux due to the
fluctuating pressure gradient and viscous dissipation. It was developed for incompressible fluids using
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the Langevin approach (formulation III). The system (65)-(68) is now specialized to

X, _,

a

av, 1 aP (84
C

oVa_ 2 AV, + F,.

G = Rox, Tt

The corresponding Langevin-type stochastic differential equations (modeling the dynamics of X, and
V,, P) were designed by Haworth and Pope as follows:

dx, =V, dt,
(85)

X
where dW, is the increment of an isotropic Wiener process

AW,y =0,  (dW,dWp) = di Oy,

v, = (vA(V,) - % @> di + Goy(Vy — (V) dt +(Co)'? dW,,

and ¢ denotes the expectation of the rate of dissipation of the kinetic energy of turbulence. It follows
from (84) and (85) that

1 0P

+ VAV + F, = GV — <Vp) dt + (Coe)'’* dW, (86)
represents the closure model. Two fundamental assumptions lead Haworth and Pope (1986} to this
model:

(1) The effect of the fluctuations of the surrounding fluid depends linearily on velocity and is
locally Markovian.
(2) The stochastic term is consistent with Kolmogorov’s scaling law for the inertial subrange.

These two assumptions cannot be justified on a rigorous basis. The first assumption is inconsistent
with the quadratic dependence of the fluctuating pressure gradient on the fluctuating velocity com-
ponents as is apparent from (83). Turbulence is, strictly speaking, not a Markovian process, but the
fluctuations in the inertial subrange are closely approximated by Markov processes (Monin and
Yaglom, 1975). Considering the second assumption, we note that the stochastic term of the closure
model (Wiener process) represents the stirring action of the surrounding fluid which is due to the
fluctuating pressure gradient, viscous stresses, and external forces. This agitation is not restricted to
the inertial subrange of the spectrum, whereas the model (86) takes into account subrange scaling
only. Finally, it is important to notice that the closure (86) is not applicable to bounded variables
such as the thermochemical scalars because no boundedness restriction can be implemented in linear
models. However, the closure model (86) is tensorially consistent, realizable, and relaxes to a Gaussian
pdf in the homogeneous limit. The final form of the closure model was established by constructing the
tensor G,, as a local function of Reynolds stress, mean rate of deformation, and dissipation rate. This
constitutes a closure assumption and the form chosen by Haworth and Pope is linear in these
moments, i.e.,
v,

1 1
Gaﬂ = % ;éuﬂ + aZ;baﬂ + Hllg.ﬂj—ég‘, (87)

where 7 is the turbulent time scale ( = k/e) and H,g,s is a linear function of the anisotropy tensor

G L MY (88)

af — I Vap
M
containing nine constants. Applying all exact symmetry and reduction properties, Haworth and Pope
succeed in reducing the number of constants from eleven to six. These six constants are then
determined with the aid of experiments in strained and unstrained homogeneous turbulent flows. The
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model was applied to self-similar free shear layers and Haworth and Pope (1987) found that good
agreement with experiments could be achieved for homogeneous and nonhomogeneous flows, if the
constraint (Speziale, 1983) of proper transformation in the limit of two-dimensional turbulence was
relaxed.

Closure Model for the “Return to Isotropy” Part of the Pressure-Gradient Term. It is straightforward to
construct a closure model for (82) that simulates the return to isotropy aspect of the fluctuating
pressure gradient, as Pope (1985) has shown. This is accomplished by pairwise interaction of material
points with velocities v’ and v in a sufficiently small neighborhood such that:

(1) v™ = (v’ + v") remains constant and
(2) the difference Av = v’ — v is reoriented randomly but |Av| remains constant.

The reorientation is carried out with uniform probability on a sphere with radius |Avj that is centered
at v™ in velocity space. This interaction model can be set up in the pdf formulation as follows:
consider a volume Av in velocity space centered at v and a time interval At and let the pdf f,(v; X, 1)
be approximated by N(x) elements. Let N(v) be the number of elements with v, < v,(x, 1) < v, + Ay,
forax =1, 2,3 and
N(v
%)—»fl(n;x,t) as N—ooo and Av-0.
The change of the number of elements in Av at v during At due to the stochastic reorientation of
velocities is then

1 -, .
A'tAN(D) = AN*(v) — AN (v),

where AN*(v) is the number of elements added to the volume Av at v and, analogously, AN (v) is the
number of elements removed from Av at v during At. The number of added and removed elements
can be established if the probability of interaction per unit time and the probability that the inter-
action of two elements produces an element in Av at v or removes an element from this volume, are
set up. Let © denote the frequency of interaction (time scale of interaction) and let f,(0'?, vY; x, 1){Av)?
be the probability of finding elements in Av at o' and elements in Av at vY; then the assumption
of statistical independence of finding elements in Av at v from finding elements in Av at v" for
[v' — v > |Av] is invoked. It follows that the equation

£2,009, 09 = £, (), (v) (89)

holds in analogy to the assumption of molecular chaos in the context of the Boltzmann equation (see
Chapter 2.7 in Keizer (1987)). Finally the notion of transition pdf is introduced and

T, v’ — v)Av

denotes the probability that the interaction of an element v with an element v¥ produces an element
in Av at v. It follows that

A N*(u“’) - % g {zj: zk: £ (0N f, (VW) T(v", v — y)
+ LT LODACD T, 0~ u“’)} (8w’
J
holds, and by restricting T to the symmetry T, v® - v) = T(V®, v - v), we obtain
AN* () = g Z Ek: 1,09 f; () T, o™ — P
7
and likewise (for the removed elements)

- oan N : ; .
AN'(U(‘)) = T Z Z fi (‘)U))fl (\)(") T(\)(J), o' — l)(k’).
jFik#i
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Passing to the limit Av— 0, N — oc we get

1
(v) ==~ {j dv’ jdv" L)) T, 0" =) — f; (U)}- (90)

This is the general form of the effect of pairwise interaction of clements on the single-point pdf. It is
very similar to the effect of a jump process in the Langevin equation (compare with (79)). There is,
however, a subtle conceptual difference between (90) and (79): Since (90) describes the interaction of
two elements, those elements cannot represent two realizations of a single stochastic differential
equation since different realizations cannot interact with each other. Hence, (90) is outside the scope of
the Langevin approach discussed in Section 3.2. The stochastic reorientation model can now be given
in terms of the transition pdf T. The two geometrical properties characterizing this model lead to

1 1

TW, v = v) = —— (v~ Lo 4+ v = v =) o1

4 v’ — v
It is easy to see that T is the pdf with respect to v and that T is concentrated on the sphere with
radius |v’ — v"| centered at (v +v") in velocity space. The stochastic reorientation model is equiva-
lent to Rotta’s closure for the “return to isotropy” contribution to the pressure-gradient correlation on
the level of second-order closures (see Rotta, 1951; Pope, 1985).

3.4. Closure Models for the Molecular Transport Terms

The molecular transport terms (see (63)) were shown to affect the pdf f, in physical space and in
velocity-scalar space. Since the part accounting for the effect in physical space is negligible except in
the close vicinity of fixed wall boundaries, we consider only the closure models for the effect of
molecular transport on the single-point pdf f; in velocity—scalar space. The closure for the molecular
transport terms is usually called a mixing model.

Linear Models. Dopazo (1975) put forward the closure assumption that the pdf flux in velocity-scalar
space is a linear function of the probabilistic variables. This linear relation corresponds to quasi-
Gaussian behavior of the flux. It is also inherent in the linear Langevin model of Haworth and Pope
(1986), where a linear drift in velocity space accounts for the dissipation of mechanical energy
produced by random external forcing. This model has serious drawbacks; in particular, it is unable to
produce a continuous pdf in flows which are initially totally segregated. It is, however, valuable for
theoretical reasons, because it can be shown to be the short time limit of the general nonlinear closure
model discussed below (Kosaly, 1986; Kosaly and Givi, 1987).

Nonlinear Models. Models based on the interaction in velocity—scalar space of two or more fluid
volumes (elements) depend in a nonlinear fashion on the pdf f;. This can be deduced from the fact
that the interaction of two or more elements requires the probability of finding those elements in a
given neighborhood of the physical space. Presuming chaos locally, statistical independence prevails
and the probability of finding elements is given by the product of the pdf f, at the chosen velocity
and scalar values. The interaction model has already been established in equation (90) for the case of
pairwise interaction. It remains to determine the transition pdf T for the present case. It follows from
the properties of the molecular transport terms acting on the pdf in velocity -scalar space (see (63)),
that any closure model must preserve normalization and mean values and reduce variances and
covariances. Several authors have suggested expressions for the transition pdf T (see Dopazo, 1979;
Janicka et al., 1979; Pope, 1982), which can be given in the common form

1
T,y =y = J dor A)d[y — (1 — )y — 3oy’ + ¥, (92)
0

where « is a random variable governed by the pdf A(2). This variable « controls the amount of mixing
of the properties y taking place in a pairwise interaction (recall, that y represents the collection of
probabilistic variables of the pdf). Several special models, defined in terms of A(x), have been
developed.



270 W. Kollmann

Curl’s (1963) Model. This model was originally derived for the pairwise interaction of droplets. Tt is
given by
Al) = d(x — 1) 93)

and

T,y —y) =8y — 3y +¥)) (94)
The definition of A(x) corresponds to complete mixing in each interaction. If two elements with
properties y' and y’ interact, they emerge with 3(y" + y”) after the interaction. It is computationally
very efficient but has a serious drawback. This model is not capable of producing a continuous pdf if
the initial condition is given as a collection of Dirac pseudofunctions, as would be the case for initially
totally segregated flows (see Pope 1982).

The Dopazo Model (Dopazo, 1979; Janicka et al., 1979). The basic idea of this model is to randomize
the extent of mixing. The interaction of two clements produces incomplete mixing governed by A(x).
The form of A(x) can be related to the local structure of mixing regions (Dopazo, 1979), which leads
to intricate expressions for A(a). Typically the choice for A(x) is of the simplest possible form that
produces a continuous pdf for initially totally segregated flows:

Alw) = 1. (95)

This mixing model found wide application, in particular in reacting flows (see Pope, 1985; Jones and
Kollmann, 1987; Chen and Kollmann, 1989). It satisfies the mathematical constraints for moments,
but all standardized moments

™

y‘m = 5 3 m > 2,
yHm?

diverge for m >4 in the limit of decaying homogencous turbulence (Pope, 1982). Hence, freely
decaying homogeneous turbulence does not approach a Gaussian pdf with this mixing model.

Pope’s (1982) Model. Pope noted that the Curl and Dopazo models mix elements independent of
their mixing history. He suggested biasing the sampling of element pairs with the age of the elements
(time elapsed between mixing interactions). This amounts to including an additional probabilistic
variable age in the pdf. Hence, fX(y, s;x, t) is taken as the single-point pdf of ¥ and the time s
between mixing interactions and f,(y; x, t) can be recovered as

filysx, 1) = jds [y, s x, 0.
The pdf f,(s) of the age variable is obviously

f:s(sa X, t) = j.dy fl*(y’ S; X, t)

The age distribution can be changed if the sampling of elements for the mixing interaction is biased.
The sampling bias z(s) is defined as the relative probability of sampling an element with age s. It is
normalized

j.ds 2(8)fi(s) = 1

and the pdf of finding two elements with y’ and y” is now biased according to

R X, OfF*Ys x, 1) dy' dY’
where

Y X 1) = r ds z(s)f*(y, 5 %, 1) (96)
0

is the pdf of the elements sampled for mixing. The mixing model appears now as

3 1
%f;‘ = ;{jdy’ jdy" Fe(y) )T Y =Y — fl**m}. o)
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The choice of the sampling bias z(s) enabled Pope (1982) to produce standardized moments that
remain bounded in the limit of decaying homogeneous turbulence.

3.5. Time Scales

The closure models for the pressure correlations and the molecular-transport terms require a turbu-
lent time scale 7. It is clear that the single-point pdf f; of density, velocity, and thermochemical scalars
does not contain information on time or length scales. Two methods have been devised to provide the
necessary information on time (or length) scales.

The Mean Rate of Dissipation. The first method provides the scale information by including a
separate transport equation for the rate of dissipation:

dv, [ Cv,  Cuy
s = v=—" 2 1), 98
‘ <y Cxg ((?x,i * ﬁxa>> 58)

which in turn determines a turbulent time scale

k
1=C-, (99)
£

where k = 1(v,v,> denotes the kinetic energy of turbulence and C is a constant of order one. The
continuous distribution of scales in the spectrum is therefore described by a single and global scale t.
The exact transport equation for the dissipation rate ¢ is dominated by a sensitive balance of
production, destruction, and turbulent-transport terms, which are all nonclosed. The closure of this
equation has been carried out in the context of second-order models (see Hanjalic and Launder, 1972;
Lumley, 1978; Wilcox, 1989). It represents the least-justified part of closure models on the moment
and pdf level.

Pdf Closures Including Scale Information. Scale information can be included in the pdf in two different
ways. Meyers and O’Brien (1981) and Sirignano (1987) suggested including a scale-determining
variable such as the gradient of scalars in the set of probabilistic variables of the single-point pdf. Tt
follows that the single-point pdf then provides the scalar time scale

_
Ko7 (190

since both numerator and denominator are integrals of the pdf of ¢ and V¢. Carrying this idea over
to velocity, it becomes clear that the inclusion of all strain-rate components amounts o adding six
probabilistic variables, which is rather expensive in any numerical method of solution. Adding the
dissipation rate as a probabilistic variable leads to closure problems similar to the moment equations.
This approach has been suggested by Pope (1985), who gave a Langevin formulation that ensured
relaxation toward a log-normal pdf for the nonnegative variable dissipation rate in the absence of
inhomogeneity. The second possibility of dealing with the scale problem is to consider multipoint
pdfs. levlev (1973) and O’Brien (1980) discussed multipoint pdf transport equations and closure
methods based on mathematical realizability conditions. Spatial multipoint pdf equations have received
little attention so far due to the enormous computational cost for their solution. However, two-time
pdf equations can be solved numerically and yield turbulent time scales. This is in fact the second way
of including scale information in the pdf as pointed out by Pope (1985) and Kollmann and Wu (1987).
The two-time pdf F,(v, 1'; v, X, t) satisfies a transport equation identical to (56) as shown by Kollmann
and Wu (1987). The solution of this equation can be carried out using stochastic simulation tech-
niques Time histories of velocity are recorded and their statistical evaluation leads to integral time
scales 7 because

R(x, 1, 1) = J‘d\)' jdu DU Fo (0, 150, X, 9] (101)

leads to
¥ Ra(x,t+ 1)
)= dr =2 ——. 10
T(x ) J\O ! Raa(x’ [ l) ( 2)
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Note that the dissipation rate ¢ can be recovered from

R,.(X,t, 1)
. )

ex,t)=C (103)
No separate equation for a scale-determining variable has to be solved. The application of this
method to plane mixing layers by Kollmann and Wu (1987) shows promising agreement Wwith
measured velocity moments up to order three.

4. Applications and Extensions

Pdf methods have found the widest application in turbulent reacting flows. Both premixed and
non-premixed systems were investigated. The progress made in the area of premixed turbulent
combustion was reviewed recently by Pope (1987) and Borghi (1988). Hence only the case of non-
premixed turbulent combustion will be considered here.

4.1. Turbulent Non-premixed Combustion at Low Mach Numbers

Turbulent non-premixed combustion is created by the interaction of one or several fuel streams with
an oxidizer stream. The mass fraction Y, of species i in such a reacting mixture is governed by (8) or
(9). Bilger (1976, 1980) has shown that the energy equation written for the sensible enthalpy has, at
low Mach numbers, the same structure as the species balance. Lincar combinations of mass fractions
and enthalpy (Shvab-Zeldovich coupling functions (see Williams, 1985)) can be found such that the
chemical source terms are eliminated in all equations except one. Since elemental mass and mole frac-
tions are always conserved and not uniformly constant in non-premixed flows, it follows that there
always exists at least one conserved scalar among the variables describing the local thermodynamic
state. Appropriate normalization with the values in the fuel and oxidizer streams leads to the mixture
fraction ¢, which plays a central role in non-premixed combustion theory (see Bilger, 1988). An impor-
tant consequence of this formulation is the fact that the density p now becomes a local function of the
mixture fraction ¢ and the other thermochemical variables. The Eulerian pdf f1(d, v, @y, .-, @i X, 1) is
therefore restricted by

fl(d9 U, Py5-en (Pl) =f1*(‘)’ Py oo (,Dl)(S(d - P((Pla LR (pl))
and the transport equation for fi* follows from (47) by integration over the values d of the density.
Denoting by p(@y, ..., @) the local relation with the thermochemical scalars and setting ¥ =¢ we
obtain the Eulerian pdf equation

ot 5f1*}+ L 0
J

plogs - <p,){§ + vpgx—[; j(p(q)l, e @)A1 s @)

o 5(;
0 op Oty A 190 0 i\ &

- _ -y {— L 104
v, <(6xa 0xp pf,) f> ,; og; <6xﬂ (pl"l Cxg 1) (104)

1
f=d(v(x,t) —v) [_]1 Sy, 1) — @) (105)

where

Exactly the same equation follows from (56) for the Lagrangean pdf F¥ (the asterisk is ommitted in
the following). The application of pdf methods to non-premixed combustion problems depends
crucially on the chemical mode. The chemistry of gas phase combustion is extremely complex and
simplified model systems of reactions are therefore essential for the solvability of the resulting pdf
equation. The pdf methods for non-premixed combustion are therefore classified according to the
chemical models.

Equilibrium Models. Chemical equilibrium prevails locally to good approximation (Bilger, 1976) for
turbulent reacting flows with fast reactions, which is the case if the time scales of the reactions are
much smaller than the time scales of convection and diffusion (high Damkéhler number). It follows
(Bilger, 1976) that the local thermochemical state is then determined as the minimum of the Gibbs free
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energy for a given mixture fraction, pressure, and enthalpy (sensible plus formation enthalpies).
Turbulent combustion at low Mach numbers allows two further approximations:

(A) The pressure is constant in thermodynamic relations.
(B) Enthalpy is a linear function of mixture fraction.

The first approximation is based on the observation that, for low Mach numbers and small mean
pressure gradients, pressure fluctuations are small

(0] <<p<';>>”2> « 1.

Hence we can neglect the pressure variations due to fluid mechanics in the thermochemical aspects of
the reacting system. This does not hold for supersonic and rapidly expanding and compressing flows,
where the pressure fluctuations can be of the same order of magnitude as the mean pressure itself. The
second approximation can be seen to be a consequence of the energy equation. If the Mach number is
much less than unity, the dissipation function in the energy equation (13) can be neglected; if the
pressure is approximately constant, the substantial derivative of the pressure in the energy equation
can also be neglected. Hence

Dh _ 0q,
"D = Tax,
is obtained. This form of the energy equation reduces to the same convection—diffusion equation for
enthalpy as for the mixture fraction under the standard restrictions (Bilger, 1976) of the equilibrium
flame sheet model. It can be argued (Bilger, 1976) that a linear relation between h and mixture
fraction & exists sufficiently far away from boundaries, where h and ¢ do not necessarily satisfy such
a linear relation. Again, this approximation does not hold for supersonic flows where @ becomes
significant and the enthalpy ceases to be a conserved quantity. It follows now that the pdf equation,
for turbulent flows involving fast reactions and low Mach numbers, contains only a single conserved
scalar (mixture fraction) to account for combustion. The value of the mixture fraction uniquely
determines the density, temperature, and composition so that expectations of these variables can be
obtained by a straightforward integration. Pdf methods have been applied successfully to this case
and the closely related turbulent transport of passive scalars (Kollmann and Janicka, 1982), but the
full power of pdf methods has not been exploited in the transport of conserved scalars. Furthermore,
the condition of high Damké&hler numbers is too restrictive for many fuels (in particular hydrocarbons
(see Bilger, 1988)).

@

Nonequilibrium Models. The inclusion of chemical nonequilibrium for reaction systems proceeding
with finite rates requires careful analysis of the usually complex system of reactions in order to obtain
a tractable system. The tools available for the reduction of complex systems of reactions are partial
equilibrium for selected steps and constrained equilibrium, where the progress of reactions is assumed
to take place in a series of quasi-equilibrium states subject to a set of constraints which are controlled
by the rate-limiting reactions (Keck, 1978). These tools are not perfect and considerable insight into
the detailed reaction mechanism and calculations of laminar flames are required to establish a
reasonably accurate simplified mechanism (Kee and Peters, 1987; Peters and Williams, 1987, Rogg
and Williams, 1988). Pdf methods were applied successfully to hydrogen-air flames (Chen and
Kollmann, 1989a), CO-air flames (Pope and Correa, 1986), methane-air flames (Masri and Pope,
1989; Chen et al., 1989), and propane-air flames (Jones and Kollmann, 1987; Chen and Kollmann,
1989b). Other reactants were treated by Givi et al. (1985) and Arroyo et al. (1988). We consider the
case of turbulent methane combustion in jet flames in some detail to show the properties of pdf
methods following Chen et al. (1989). The combustion of methane with air is described with the
four-step mechanism of Peters and Kee (1987), which requires five scalar variables Wj(x, ). They are
defined as follows:
Y, = ¢ (mixture fraction), ¥, = ncyas

¥, = ne, Y, = n,

WY, = ny
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(n denotes the number of moles per unit volume). The pdf equation (104) is integrated over velocity
space

of, . o é ;
{p> {% + U”ale,, + J; a—(pj(qj'((l’xs S ‘Pl)f:)}

é
= -

- ! A a . -
> i1, = o)) — <<p> y £<E (pr;%) Wy, = qoj>f1) (106)

ra J=1

and the density-weighted pdf £, defined by

~ (@1, ---> @)
=P p 0%, 1) (107)
P>
is used for essentially formal reasons. The turbulent fluxes and the time scale are determined from a
second-order closure model {Dibble et al., 1986). The closure for the flux is given by

YUY = o i = Q(P)E.v;'vk'ifl—- (108)
£ dxg

The mixing model (scalar-dissipation model) is the nonlinear interaction model of Dopazo (1979) and
Janicka and Kollmann (1979) described in 3.3, equation (91). The rates of the four-step mechanism
determine the source terms g;(¢, ..., ¢;), which control the motion of material points in scalar space
due to combustion. The boundaries of the set of realizable states in scalar space are rather intricate
(see Chen et al., 1989). They satisfy all the conditions laid out in Section 3.2 for the pdf formulation.
A detailed comparison of first- and second-order moments with the experiments of Masri et al. (1988)
was carried out by Chen et al. (1989). A sample of two-dimensional pdfs and characteristic functions is
presented in Figures 1-18. The flame considered is a turbulent jet flame burning methane with air
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from a coflowing stream. The inner diameter of the jet pipe is D; = 00072 m and the bulk exit
velocity of the fuel methane is u, = 48 m/s. The reaction is stabilized with a pilot flame (C,H, and
H,) in the annulus between fuel jet and coflowing air stream (D, = 0.018 m and u,;, = 15 m/s). The
solution of the pdf equation was carried out using a stochastic simulation technique (see Chen et al,
1989). The cross-section at x/D; = 20 is selected and results at three radial stations are presented in
figures 1-18. The pdf for mixture fraction and temperature in Figure 1 (r/D; = 1.11), Figure 7
(r/D, = 1.49), and Figure 13 (r/D; = 2.07) show the structural change of the pdf as the radial location is
shifted outward. A significant amount of nonequilibrium is observed at r/D, = 1.49 in Figure 7, where
the pdf spreads over a range of 500 K on the rich side of the flame. Much less spread is seen on the
lean side in Figure 13. The pdf of the CO mass fraction and temperature in Figures 2, 8, and 14
exhibits the change from a narrow pdf at r/D, =111 to a broad and doubly ridged form at
r/D, = 1.49 and finally to a club-like shape at r/D; = 2.07. The pdf of CO and methane mass fractions
in Figures 3, 9, and 15 reflects the amount of coexistence of these components. The pdf is spread over
a wide range of methane mass fractions on the fuel rich side at r/D, = 1.11, but gets gradually
squeezed toward zero as the radial location is moved into the lean side of the flame zone. Figures
4-6, 10-12, and 16-18 contain the characteristic functions in separate graphs for real and imaginary
parts corresponding to these pdfs. It is noticable that the characteristic functions are much smoother
than the pdfs (no smoothing of pdfs or characteristic functions was performed). Furthermore, it should
be remembered that discontinuities of the pdf appear as oscillations with decaying amplitude in the
characteristic function. The characteristic function is real valued if the pdf is symmetric. Hence, the
imaginary part of the characteristic function is a measure for the skewness of the pdf. Finally, note
that the primed variables in the figures are the independent variables in Fourier space corresponding
to the unprimed variables in scalar space. The characteristic function for mixture fraction and
temperature in Figures 4, 10, and 14 shows a ridge, which decays with distance from the origin with
increasing speed as the radial location is moved to the lean side of the raction zone. The characteristic
function for CO and temperature in Figures 5, 11, and 17 is centered around the origin (real part)
with quickly decaying waves, except at r/D; = 1.49 indicating stronger discontinuity in the pdf. The
characteristic function for CO and methane in Figures 6, 12, and 18 shows slowly decaying waves in
real and imaginary parts as r/D; = 1.11 and r/D; = 2.07, but much less waviness at r/D; = 1.49 which
indicates a smoother pdf at this location.

This example shows clearly the degree of chemical nonequilibrium that can be present in a
hydrocarbon flame. The fact, that all thermochemical variables are bounded, together with the
unusual forms for the pdfs obtained in this example, demonstrates that assumptions like the quasi-
Gaussian one are untenable for scalar pdfs.

4.2. Turbulent Supersonic Flows

Compressible turbulent flows pose new and challenging problems, in particular in the area of
supersonic combustion. Pdf methods can be applied fruitfully to this type of turbulent flows, but the
research effort is still in the beginning stage (Farshchi, 1989). The basic theory for the pdf approach is
outlined here and possible ways of its application to supersonic combustion problems are discussed.
The case of compressible nonreacting flows of an ideal gas is considered first.

Turbulent Supersonic Flows Without Reactions. The balances for mass, momentum, and energy set up
in Section 2.1 are transformed to dimensionless variables. Mass balance appears in unchanged
dimensionless variables ((6); only the Eulerian frame is used in the following), but momentum and
energy balances contain several dimensionless parameters. The momentum balance is now given by

Dy,  dp 1 Oty

— 2= - — 4+ -—-+ Bpf, 109
Dt 6x,+Re 8x5+ s (109)
where
L L
Re = Potol g Jol (110)
Ho uz

with pg, g, L, tig, To, ko, fo denoting the reference values. The stress tensor appears in unchanged
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dimensionless variables (12). The energy balance emerges as an equation for the internal energy e in
the form

De dv, M? v 0q,
pp; =~ =D+ YMZp) == + 9y — D)= e

- = . 111
ox, Re Pe x, (n

where the ratio of specific heats y was assumed constant and

c
M,=—, ak = yRT,, Pe = Re - Pr, pr = Moo
a, ko

are the Mach, Peclet, and Prandtl numbers for the reference state. The energy balance can be recast in
terms of the specific (dimensionless) entropy

Ds 1 0 <qa> ( M¢® 1 g, 0T 112

TR | el R

pE:—f’Eaxa T Re T PeT?dx,
The dissipation function @ in dimensionless form is given by (16) and the heat flux is
oT
= — k .
e ox,

where k(T) is the dimensionless conductivity. The ideal gas equation appears in dimensionless form
as

1
yM32p=—pe — 1. (113)
c,

Single point pdfs can now be defined in several ways for compressible flows (since mechanical and
thermodynamic state are completely specified) if the velocity and two thermodynamic state variables
are known. In the present case the following set of variables is considered (for a different set, see
Farshchi (1989)): Velocity v, density p, internal energy e, and rate of volume expansion D = 0v,/dx,.
The tranport equation for D follows immediately from the momentum balance

pp 1 a(laza,,> avaaﬂ”a_fa_i(lip), (114)

Di Redx,\p ox,) 0xp0x, = 0x, 0x,

The definition off (see (48)) is now modified as follows:
f=8(v — vd(p — d)dle — wd(D = {), (115)

and the pdf equation for compressible turbulent flow without reaction emerges as
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(116)

This form of the pdf equation contains information on a special time scale, namely the time scale of
volume expansion. The inclusion of the inverse D of this time scale is the reason for the evolution-
type structure of the pdf equation (116). The rate of volume expansion D could be eliminated, but
then a pdf equation of the hyperbolic type would result.

Turbulent Supersonic Flows with Chemical Reactions. Turbulent flows at supersonic speed, with
combustion reactions, lead to several new problems. The mixing of fuel and oxidizer becomes a
problem of central importance because of the reduced residence times at high speeds and the effect of
compressibility to reduce the turbulence level (see Papamoschou and Roshko, 1988; Papamoschou,
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1989) and therefore the intensity of mixing. Turbulent flow at supersonic speed can be modified
significantly by the interaction with shocks created outside the turbulent-flow field and random
shocks (called shocklets (Johnson et al, 1988)) created by supersonic turbulent shear layers. Pdf
methods can be adapted to include the effects of compressibility and combustion. We consider first
the case of infinitely fast reactions. It was shown in Section 4.1 (Equilibrium Models) that three
variables determine the local state in this case: mixture fraction, pressure, and enthalpy. Pressurc can
vary significantly in supersonic flows and enthalpy is not conserved due to frictional heating in high
shear regions. Hence, no further simplification, as in the case of low Mach number subsonic flames,
is possible. The pdf f; defined in the previous section has to be modified to include the mixture
fraction &:

fi(v, 70,8 m %, 1) = (v — v)o(p — md(h — a)8(D — )3 — n)- (17

Ideal gas relations allow replacement of pressure and enthalpy with density and internal energy.
Hence, a pdf transport equation similar to (116) is obtained with additional terms accounting for
transport in mixture fraction space. Mean thermodynamic properties follow from the pdf f, by
integration. The mean temperature for instance is given by

(Ty = jdn J-da jdn T(n, o, nfi(7 o, n)

where T(n, 6, n) denotes the local relation of temperature {0 pressure, enthalpy, and mixture fraction.
Extension to finite-rate chemistry can be carried out with the methods described the previous
subsection. However, no closure models have been developed so far for (116), or its counterpart for
reacting flows, and much work remains to be done.

Shock— Turbulence Interaction. The interaction of shocks with turbulence poses a formidable problem
of practical importance (Billig and Dugger, 1969). So far, mostly moment closures (Kollmann et al.,
1985) have been used to predict mean fields in the region of interaction and mean shock properties
and location were calculated with shock-capturing techniques. The application of pdf methods to
supersonic flows with embedded shocks is a new area. Since shocks are near discontinuities for finite
Reynolds/Peclet numbers (and approach genuine discontinuities as Reynolds/Peclet numbers go to
infinity), it is natural to ask what the structure of the pdf equation will be in the presence of
discontinuities. For the investigation of this question, a single balance equation for a scalar quantity
®(x, 1) is considered. The equation

A

%‘3 + o _ $=0, D(x, 0) = Dy(x), (118)

at - 0x
where F(®, x, t) is the flux and S(®, x, t) is the source term. This equation admits discontinuous
solution in its weak form (Majda, 1984). If the initial condition is chosen randomly from a set of
differentiable functions, then the statistical properties of the solution can be described in terms of the
pdf fi(e: x, 1)

f=s@x -0, fi=<D

If the flux F and the source S are local functions of ®, and if the solution @ remains at least once
continuously differentiable, then the pdf equation follows from (47), i.e.,

of, oFdf, @ OF a0
SRV T TR ={ , 1
St apax g SO =50 ax! (H9)

However, the right-hand side is nonzero if the flux F is a nonlinear function of ®. Its structure is not
suited for the analysis of discontinuities and a different method must be used for this case. The theory
of stochastic differential equations allows analysis of the scalar @ taken at a fixed location x. The

temporal increment of ® is then
d® = d®, + dP + dW, (120

where d®, is the deterministic and differentiable part of d®, dP is the increment due to a jump
process, and dW is the increment due to a continuous but not differentiable process. The differential
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equation (118) leads to
do = —a—th + Sdt.
0x

The source term S dt can now be viewed as the sum
Sdt =S,dt +dW (121)

of the differentiable contribution S, dt and a continuous but nondifferentiable part dW. The flux term
requires a closer look. If F(®) depends on @ in a nonlinear fashion such that discontinuities form in
finite time from smooth initial conditions, then there exist random and discrete-time instances when
discontinuities cross the fixed location x. Hence, the derivative of the flux is the sum of a singular and
a continuous part

oF oF
Py togoa—u+ (;)

<t
where [®]; denotes the jump height at time ¢; and (8F/éx), denotes the continuous part. Hence,

dp =Y [®];dto(t —t) (122)

<t

is the increment of a jump process and the increments in the stochastic differential equation are now

identified as
0F
dd, = <so - (‘—) ) dt
ox /,

along with (121) and (122). The pdf equation for the solution process of (120) can be deduced from
(81) as follows:

of, @ oF 12 1 o
5} + 20 {(So - (&c)c)f‘} = EW{Bf‘} + T{qu) H@)T(® —*‘D)—fl} (123)

if dW is specialized to a Wiener process. It becomes clear by inspection of this equation that the
discontinuities crossing a given location x affect the evolution equation for the pdf in integral form
appropriate for jump processes. This integral requires the probability of a jump from @' to ®, denoted
by T(®' — ®), and the time scale t for the appearance of discontinuities at x. The pdf equation derived
from (120) does not provide this information, because only a single location x is considered and
x-derivatives constitute therefore new unknowns.

This example showed that the appearance of shock waves with random location and strength
produces an integral contribution to the pdf equation. It can be expected that the time scale and the
transition pdf T(® — ®) are functionals of the flow variables. The explicit form of this functional
relation is unknown at present.

5. Methods of Numerical Solution

The pdf f,(d, v, @y, ..., @ X, 1) is apparently a function of a large number of independent variables.
Classical methods of numerical solution such as finite-difference or finite-element algorithms become
prohibitively expensive because the numerical effort for the solution grows rapidly with the dimension
of the domain of definition (number of independent variables). However, stochastic simulation tech-
niques can be shown to grow in numerical effort only linearily with the dimension of the domain of
definition. Hence they offer the possibility of a numerical solution of the pdf equation for a significant
number of variables (up to about ten with current computational capabilities). The development of
stochastic simulation techniques for the solution of the pdf equation is essentially due to Pope (1985).
The basic idea is to represent the pdf by a sufficiently large number of notional particles, whose
motion in physical and velocity—scalar space is governed by modeled transport equations. The closure
assumptions introduced for these dynamical equations (see Section 4) correspond to the closure
assumptions constructed for the pdf equation. The numerical algorithm is based on a fractional-step
method, where in each fractional step a numerical operator corresponding to a distinct physical or
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chemical process is applied. The motion of the notional particles is thus calculated as time evolves.
The pdf is then given approximately as a histogram of the properties of the notional particles in
sufficiently small neighborhoods in physical space. A detailed discussion of this method can be found
in Pope (1985). Several variants of this basic method have appeared. Jones and Kollmann (1987) and
Chen and Kollmann (1989b) developed a hybrid method consisting of a finite-difference algorithm for
a second-order closure for the velocity statistics and a stochastic simulation technique for the scalar
pdf equation. Haworth and Pope (1987) extended their stochastic simulation technique to flows in
general orthogonal coordinate systems and developed a second-order accurate method for Tto-type
stochastic differential equations (Haworth and Pope, 1986).

6. Conclusions

Single-point pdf methods can be deduced from exact and closed equations on the functional level. The
pdf at a single point or at a finite number of points can be viewed as the Fourier transform of the
characteristic function which is in fact the characteristic functional taken at a special argument
function. This has two important implications: there are two essentially equivalent ways to formulate
the turbulence problem at a single point or a finite number of points and the pdf or characteristic
function method are part of a general framework for the statistical treatment of turbulence based on a
linear equation on the functional level. Finite-dimensional pdf equations, therefore, achieve partial and
rigorous linearization without an approximation of certain nonlinear phenomena (such as convection
and chemical reactions) by converting dependent variables into independent variables. This is in fact
the main advantage of pdf methods over moment methods.

Pdf or characteristic function methods can be set up in Eulerian or Lagrangean frames and the
choice of the frame is a matter of convenience. The single-point case was considered in detail. The
equation for any pdf at a finite number of points is indeterminate because molecular transport
(viscous and diffusive phenomena) and the pressure-gradient terms require information given at least
one additional point for their description. Hence, a closure problem arises, which was formulated in
terms of pdfs and characteristic functions. Under certain restrictions a third formulation using
stochastic differential equations can be given. Several closure models were discussed and their
properties were evaluated. None of these models is exact and they satisfy, at best, the mathematical
condition of realizability and simulate some of the physical processes of the exact terms in the pdf
equation.

Pdf methods have been applied to a variety of turbulent flows. In particular, turbulent flows with
combustion are currently an active research area. The combustion of methane with air in a turbulent
non-premixed jet flame was discussed and selected set of results for pdfs and characteristic functions
was presented. The main conclusions that can be drawn from this particular application are the facts
that pdf methods allow for the treatment of chemical nonequilibrium and that the calculated pdfs are
very far from Gaussian shapes. Hence, no assumption of quasi-Gaussianity would suffice for the
bounded scalar variables used in such a case.

Further developments of pdf methods may include compressible turbulent flows and the interaction
of turbulence with shock waves. The basic formalism for the investigation of compressible turbulent
flows both with and without combustion was laid out and a version of the pdf equation was given for
flows without combustion. The interaction of turbulence with shock waves is a formidable problem. A
simple example of a single scalar was discussed and the effect of discontinuities on the pdf was shown
to appear as an integral contribution in the pdf equation.
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Abstract

The interaction of turbulence and chemical kinetics is examined here with the emphasis on
the influence of turbulence on chemical reactions. Both nonpremixed and premixed flames are
considered. In particular., a nonpremixed methane turbulent jet flame is used to elucidate the
complex nature of the interactions between turbulence and chemical kinetics. Furthermore.
this example provides a useful evaluation of the mixing properties predicted by a probability
density function (pdf) method.
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1.0 Introduction

The interaction of turbulence and chemical reactions occurs in turbulent reacting flows over
a wide range of flow conditions. Various degrees of interaction between turbulence and
chemical reactions can lead to different phenomena. Weak interactions between turbulence
and chemical reactions may simply modify the flame slightly causing wrinkles of flame surface
(Williams, 1989). Strong interactions could cause a significant modification in both the
chemical reactions and the turbulence. If chemical reactions cause small density changes in
the flow, then the turbulence is weakly affected by the chemical process but the turbulence
may still have strong influence on the chemical reactions. However, the purpose of combustion
is generating heat: therefore. one expects large density changes (i.e.. an order of magnituce)
which can alter the fluid dynamics significantly. It has been observed experimentally that
the entrainment process in mixing layers has been significantly altered by the heat release
leading to different growth rates than those expected in constant density flows (Hermanson
et al. 1985; Dimotakis. 1989). On the other hand. strong turbulence can strain the flames to
a point that chemical reactions can no longer keep up with the mixing process causing the
flame to extinguish. Some recent experiments by Masri et al. (1988) have revealed that local
flame extinction can occur prior to the flame blow-out limit indicating a strong interaction
between turbulence and chemistry.

To understand and quantify the complex interactions between turbulence and chemistry.
it is useful to identify the relevant length and time scales in turbulent reacting flows. An
overall characterization of the interactions between turbulence and chemical reactions can he
obtained by plotting the Damkéhler number (i.e.. the ratio of flow time scale and reaction time
scale) versus the Reynolds number over the whole range of length scales (Williams, 1989).
Based on the length scales of flames and turbulence. two extreme regimes are icentified.
One extreme with the flame thickness much smaller than the smallest length of turbulence
is identified as the flamelet regime. The other opposite extreme with thick flames compared
to the smallest turbulence length is identified as the distributed reaction regime. The nature
of the intermediate regimes between these two extremes is rather complex, and it is yet
to be explored. Unfortunately, many practical combustion systems involve a wide range of
operation conditions including the intermediate regimes.

The objective of this paper is to provide a fundamental understanding of the physics
inherent in various processes causing turbulence to interact with chemical kinetics. In view
of the importance of various practical chemical processes that occur in turbulent flows. the
present paper is devoted mainly to the influence of turbulence on chemical kinetics. To
provide a background of current theories in turbulent reacting flows, Section 2.0 reviews and
summarizes the basic physics laws for chemical reactions in mixtures of ideal gases based
on the Eulerian frame. The corresponding transformation to the Lagrangian frame is briefly
discussed.

Section 3.0 is devoted to the main discussions on the influence of turhulence on chemical
reactions. First the influence of turbulence on a binary reacting system (two species) is illus-
trated, and the degree of influence ;s characterized by the segregation parameters. Then the
pdf transport equation of a single scalar is explored and an analytic solution is derived. This
solution demonstrates the close relation hetween chemical reactions and the scalar dissipation.



Next, nonpremixed flames are considered and the appropriate measures of mixedness are in-
troduced. The essential issue for modeling nonpremixed flames is highlighted by examining
the closure problems in the current modeling methods. In particular, the mixing models in
the pdf methods are examined in depth and future developments are indicated. The analysis
of premixed flames is limited to the flamelet regime. Two proposed theories are reviewed:
the Bray-Libby-Moss flamelet theory (Bray et «l.. 1983) and the coherent flame theory of
Marble and Broadwell (1977). The regime of flame sheet combustion clearly indicates the
fundamental importance of surfaces embedded in turbulent flow field. Surfaces relevant to
combustion flows are introduced and classified according to the underlying transport mecha-
nisms. The relative progression velocity is shown to be dependent on a number of processes
including diffusion, chemical rates and the local scalar gradients.

In Section 4.0, the intrinsic topology of surfaces embedded in a three dimensional space
is discussed. The effect of chemical kinetics on turbulence is briefly described. Section
5.0 is devoted to the discussions of nonpremixed turbulent methane jet flames, which have
been studied extensively by experiments and numerical simulations. The results from a
stochastic simulation of the joint scalar pdf equation permit us to evaluate the mixedness
parameters introduced in Section 3.0. It is shown that the mean chemical reaction rates
can be larger or smaller than their corresponding quasi — laminar values by several orders
of magnitude indicating the strong influence of turbulence on chemical reactions. The last
section summarizes the main findings from this study.

2.0 Basic Equations for Turbulent Reactive Flows

The current analysis of the interaction between turbulence and chemical reactions is restricted
to Newtonian fluids in gaseous phase, to which the thermodynamic relations of ideal gases
is applicable. Given compositions, two independent (intensive) thermodynamic variables.
and velocity, one can determine the thermodynamic state of a reactive mixture. The gov-
erning transport equations for compositions, temperature, and velocity are dictated by the
conservation laws of mass, energy, and momentum. In the Eulerian frame, these conservation
equations can be written based on an observer fixed at an arbitrary location & in the flow
field as function of time t. For some aspects of turbulent combustion, the physics can be
better described based on the Lagrangian frame (following the fluid particles) than on the
Eulerian frame. The relations that bridge the Eulerian and the Langrangian frames will be
given at the end of this section.

Mass Balance:
Conservation of mass leads to the following transport equation for the density p(x.t) on the
Eulerian frame

dp
ot + Ot o

where the repeated indexes mean summation over all possible states.

(Pl'o) = Ow (1)

Species Balance:




We consider a mixture of N ideal gases with its compositions described in terms of mass
fractions Y;(z,t). When chemical reactions occur. the mass fractions. Y. are not conserved.
but consumed or produced according to their net production rates Q;. which are determined
by the reaction mechanism. Note that the net production rates. Q;. depend only on the
local thermodynamic variables: that is, Q, do not contain time derivatives of thermodynamic
variables or their integrals with respect to time or space. The transport equation for the mass
fraction of the /-th species is then given by
DY; aJ

o

Dt 0L o

-+—[)Q,'. t=1.N {

where J! denotes the diffusive flux in the a-coordinate. For multi-component reacting sys-
tems, the diffusive fluxes can be expressed in terms of functions containing gradients of species
concentrations and their binary diffusion coefficients. If the i-th species is sufficiently diluted.
its diffusion fluxes can be approximated by the Fick's diffusion law,

Y,

‘Org’

J. = —pT (3)
where I'; is the diffusivity of the i-th species. For the purpose of this paper, we will use
this approximation as it provides a very simple formula for calculating the diffusive fluxes in
reacting flows. '

Momentum balance
Newton's second law leads to the balance equation for momentum,

Dv dp  Oras
= = - s (4)

where 7,5 is the stress tensor and f, is the external force per unit mass. For Newtonian
fluids, the stress tensor obeys the following constitutive relation:

Ov, Ovg 2_ Ovy
agd = a A —60' -
Tag = pl Or 3 * Oroa 3 da.t.,
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~—

)s (

where p is the dynamic viscosity. An important feature of equation (5) is the linear re-
lationship between the stresses and the rates of strain which are expressed as the velocity
gradients.

Energy balance and state relations

Application of the first law of thermodynamics to a differential control volume leads to the
energy balance equation in the Eulerian frame. This equation can be expressed in terms
of several equivalent forms depending on the choice of the thermodynamic variables. If the
specific enthalpy h(r,t) is chosen, the energy conservation equation can be written as

Dh _ Dp d aQQ

— = - . (6)
Dt Dt + Jrg
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If the specific internal energy e = h — p/p is used. one can derive the following transport
equation for e

De dv dq
P = s+ B - =
Dt drg T a
where ® and ¢, denote the dissipation function and the energy flux in the a-coordinate
respectively. The dissipation function @ is defined by

(1)

Ovn
P = ry—. 3
T Ja“ (3)

which represents the heat generated by mechanical dissipation due to viscous friction. The
energy flux ¢4 is expressed as a combination of conductive, diffusive, and radiative fluxes.

oT "\ h; . 0OY,

R
_ LR AT 3 9
oz4 p; g, T )

qa = —k
For multi-component systems, with the ideal gas assumption, the mixture enthalpy is

simply the sum of individual specific enthalpy weighted by its concentration

n hi
AM;

>
I

Y., (10)

=

where h; is the molal enthalpy and M; the molecular mass of the :-th component. The molal
enthalpy h; consists of two parts: the formation enthalpy h? and the sensible enthalpy

T
he = ;3‘3+/ dT'e,(T"). (11)

Ty

where é,(T) denotes the molal specific heat at constant pressure. The above system of
equations is completed if the ideal gas equation

n Y, ‘
p:p?RTZv (12)
i=1 """

(where R denotes the universal gas constant and M; the molecular mass) is included and the
chemical sources @Q; are specified.

So far we have presented the basic conservation laws in terms of mass fraction ;. enthalpy
h, density p and velocity v. This set of variables may not always be the most convenient
ones, and a linear or nonlinear combination of these variables could be used for the treatment
of turbulent reacting flows. For low Mach-number flows, it has been shown (Pope. 1985). by
using a Taylor series expansion of the state relations, that chemical sources are, to the lowest
order, independent of pressure fluctuations and that the substantial derivative of the pressure
in the energy equation (6) can be neglected except under the condition of strong pressure
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variations. Consequently, for low Mach number flows, the set of thermo-chemical variables
¥i(r,t) obey a similar type of transport equations as

Dlﬁ‘,’ 0 8:.',- .
= i i 1 =1.1L 13
P"Di orq (pF 8.r,,>+pq e=1 (13)

For combustion processes at constant pressure, the total number of thermo-chemical variables
i1s simply [ = .V + 1.

Lagrangian frame

Studies of Chemical reactions in turbulent flows can also be carried out in the Lagrangian
frame (Borghi. 1988), in which the observer follows an arbitrary material point of the fluid and
monitors the evolution of this material point. This approach has some advantages because
it is the natural frame for phenomena that are dominated by time history. Hence. the
transformation rules between the Eulerian and Lagrangian frames will be given, and the
structure of the conservation equations for the thermo-chemical variables ®; in the Lagrangian
frame will be discussed briefly (Monin, 1962). In the Lagrangian frame. the independent
variables are time t and a, which is a variable used to identify the material point. The
common choice for g is the position of a material point at the initial time #y. The position
of a material point in the Lagrangian frame is denoted by X(a.t) which can be used as a

transformation function between the Eulerian and Lagrangian frames in the following manner
= X(gt) and a = X7'(z.t)

where X ! denotes the initial position of the material point which moves to the position x at
time t. Here, the upper case letters denote the dependent variables in the Lagrangian frame
and the lower case letters correspond to the same variables in the Eulerian frame. If the
mapping function X and its inverse function X ™' are both twice continuously differentiable.
both the time and spatial derivatives in the Eulerian frame can be transformed into the
Lagrangian frame, and vice versa. For instance, the gradients of a variable can be transformed
from one frame to the other frame according to (Truesdell, 1954)

0 1 oX;0X, 0
_ 1 14
Bt 27 9 9a, Ba., Das ()
and e
9 _ 1., eﬁ,wa‘x’ 0x, 9 (15)
dagy 9 @Irmon dr, Or, Ors
where J denotes the Jacobian determinant
7 - 1 0X50X,0X, (16)

—€nJd~€8
6 """ da, day Bay

Note that repeated subscripts imply summation and that €,34 is the permutation tensor.
The transformation formula for the second and higher derivatives can be derived by using
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Eqns. (14) and (135) repeatedly. In particular. the relation for the Laplacian is summarized
here as

1 0X. 90X, @ (10‘\1- 89X, ) .

J; r — -—c . 65 —_—
9] oA Jda, Oa, dag\J daz da, Daqy
The time derivatives in the Lagrangian frame are of fundamental interest because for a given

material point, velocity and acceleration are. by definition, the time rates of change of position
and velocity respectively. The latter terms appear in the Eulerian frame as the substanrial

or the Stokes derivative
Jd Jd 13] D
= — _ (r ) — = —. 18
<at>a <0t)t+{d(:l_'t)‘ra —_ Df ( )

The transformation rules (15)-(18) allow us to derive the transport equations for thermo-
chemical variables in the Lagrangian frame based on those in the Eulerian frame. For instance,
the transport equation (13) for ¥,(r,t) can be transformed into the Lagrangian frame by using

Eqns.(17) and (18). and the result is

v, 1 0X.0X, & [RT,0X.0X, axp,-)+ 0.
ot 2R, CadyConw da, Oa, Oas "

- Ry Oay Oa. Oa,

i =1..1. (19)

Note that the nonlinear convective terms disappear, but the diffusion terms become highly
nonlinear as X is a dependent variable in the Lagrangian frame. In deriving Eqn. (19). we
have expressed the mass conservation law in the integrated form as

R(
R(

,0)
i)

1=

= J. (20)

12

where R(a,t) = p(z.t) for £ = X(a,t). With this relation, the Jacobian J can be eliminated
from the transport equations.
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3.0 The Influence of Turbulence on Cheinical Reactions.

In turbulent flows, chemical reactions proceed in an environment changing randomly in time
and space. The fluctuating nature of mechanical and thermodynamic variables can have sig-
nificant influence on the progress of chemical reactions. In this section, we will analyze this
influence in detail by examining the niean reaction rate for a single irreversible chemical reac-
tion involving only two reactive species. Under such a circumstance, the transport equation
for the probability density function (pdf) of a single thermo-chemical variable can be solved
for a non-decaying homogeneous turbulence. With the help of this solution, one can clarify
the role of the correlation between the scalar and its gradients in describing the interactions
between chemical reaction and turbulence.

The progress of chemical reactions in nonpremixed flanies depends strongly on the degree
of mixing between fuel and oxidizer. Turbulence can greatly enhance the mixing process and
thus increase chemical reaction rates by several orders of magnitude. Due to the practical
importance of nonpremixed flames, we will discuss in depth the mixing phenomenon and the
theories that describe this important process. Furthermore, special attention will be given to
the mixing models which are currently used in the pdf methods.

In premixed turbulent flames, the influence of turbulence on chemical reactions may
be described as the combined effects of convection and distortion of the reaction zone. We
will restrict our attention to the special case of thin reaction zones, which can be treated
as flame sheets. As the concept of treating turbulent flames as an ensemble of laminar
flamelets alleviates the need for detailed modeling of chemical reactions, we will provide
some discussions on the kinematics and dynamics of surfaces moving through the turbulent
flow field. Several types of surfaces relevant to turbulent combustion flows will be considered
and the topological and geometrical properties of these surfaces will be analyzed.

3.1 Mean Chemical Reaction Rates in Turbulent Flows.

Let us consider the transport equation (2) for chemical species 1. Density-weighted average

of this equation leads to the mean transport equation for Y; as

oY, oY, 9 = — :

T b=ty = _ .]' + Y " + w;. (21)
<p>( 6t + Oara) ara(< O) (p> a” g ) (p> t

The most interesting quantity that will be addressed here is the mean chemical reaction rate

w; as it depends strongly on the temperature and species fluctuations. We begin with an

analysis of this dependence for a bimolecular, irreversible reaction between two species A and

B

A+B-—-C.

The instantaneous kinetic source term w; is written as
Wy =wg = —A‘YA}'—B. (22)

For simplicity, let us consider the case with a constant k first. Average of Eqn. (22) yields
the mean kinetic source as

Wy = —k(Ya¥p + YY),
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It is clear that the influence of turbulence on the chemical reaction is reflected in the cor-

relation Y)'Y5. Application of the Schwartz inequality leads to the upper bound for this
correlation as

—

—_— 2 ——
- “n2yn
YiYg < Yi°Yp

With the inequality

— ~

y’iu‘z < f'l(l_}") , 1= A, B,

which is the consequence of Hausdorff’s theorem ( Akhiezer, 1965) on the moments of bounded
random variables, one obtains the following relation

—_— 2 . N 3 N
YIYS <Ya(l-Ya)Yp(l-Yp)

Hence, the upper bound for the mean chemical reaction can be derived as

ial € K(FaT + /Tall = Fa)¥a(1 - ¥)). (23)

Therefore, turbulence can increase the mean sources w4 compared to the corresponding

quasi-laminar values w(};). However, the opposite effect is also possible; that is, turbulent

fluctuations can also reduce the mean reaction rates. If the correlation Y'Yy is negative, it
follows that

w4l < [w(Y3)],

which is the upper bound for the mean chemical source term. We can obtain a lower bound
for |w 4| as follows. If the reactants .4 and B be totally segregated, the joint pdf of ¥4 and
Yp is given by

flya.yp) = (1 =Y4)0(y4)8(1 — yp) + Yad(1 — y1)é(yB). (24)

This pdf represents a special situation where species A and B do not coexist at the same spatial
location, but they may have nonzero mean values. It can be shown that the fluctuations are
maximal in this case. Physically, the flow consists of randomly distributed regions with
only species A or species B but not with both, and the two species are separated by an
infinitely thin interface. Straightforward integration of the instantaneous chemical reaction
rate weighted by the pdf over the entire domain produces the following correlation

YUYY = ~Vi¥a.

It is clear that w4 = 0 means zero reaction rate, because no mixing at the molecular level
has taken place. We conclude that the mean reaction rate can have a wide range of values
(but limited by the upper and lower bounds) which may be radically different from the
corresponding quasi-laminar values.



Next, the case with a temperature dependent chemical reaction rate will be considered.
We assume that k is given by the following Arrhenius form

T
MT) = ko expl =),

[V
it

One parameter to measure the influence of turbulence on chemical reactions is the ratio of
the mean reaction rate and its quasi-laminar counterpart as defined by

(26)

This expression can be further written in terms of of T /T and the pdf of T as (Borghi. 1989)

R:/ dTf(T)g(T:T.Tg) = §. (27)
0
where the monotonically increasing function ¢ is defined by
Tg, T T -T .
g(T):exp{—-fE(T—l)} =exp(—~E)'exp( TE), (28)

and it has the following properties: g(0) = 0, ¢(T) = 1 and g(oc) = exp( Tg/T) > 1. Due to
the exponential dependence of chemical reaction rate on temperature, g(T') increases rapidly
with temperature. The rate of increase is given by the derivative of g,

dg Tg )
W(T) T2 = 9(T), (29)
which has the value of Tg/T? at the mean temperature T. Under the condition of a large
activation temperature with a low mean temperature, strong temperature fluctuations lead
to large ratios R > 1, because the product of ¢(7T) and the pdf f ) increases drastically
when T > T. It is also noted that the ratio R could be less than unity, but a reduction
in the mean reaction rate can occur only when the pdf f(T) is highly biased toward the
low temperature side. These properties of the ratio R illustrate the effect of temperature
fluctuations on the mean chemical reaction rate. The combined effect of temperature and
composition fluctuations on the mean kinetic source terms will be addressed in Section 3.0
for a turbulent diffusion jet flame.

For high Reynolds number flows, the pdf transport equation for the set of ! thermo-
chemical variables governed by Eqn. (13) in the Eulerian frame or Eqn. (19) in the Lagrangian
frame can be written as (Kollmann, 1989)

-ai (@010 o)1)} =

2|

.+_
7

+
-
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where the density-weighted pdf f; is defined by

foz o e o
{p)

and the scalar dissipation rates ¢;; in the conditional expectations are defined by

). (31)

|~

SNV-T5

ov,; 0¥,
= ! 32
fu = Fa.ra Orq (32)
with I'; = T'; = I'. For homogeneous turbulent flows, this equation reduces to
i 0
(P){'a—tﬁ-;aw(Qﬂvla s0f)) =
Ll g )
= ((€;%|¥; = p;) f1)- (33)
<p);;a¢,—am(“l J i1

The special case with a single scalar variable (I = 1) is of particular interest. Integration over
the scalar interval [—o0, ] leads to

oF 3] .
2 T+ gollenl¥ = 2 fi) =0, (34)

where F) is the distribution function associated with the pdf fi. For statistically stationary
turbulence, the time derivative can be eliminated from Eqn. (34) and the result is

- ] . -
Qo) file) + (7‘;{<611!¢>.f1(¢)} =0 (35)

This equatuion can be solved analytically, and we obtain the following general solution

(enlp) fi(p) = Cn - exp{- / E”w } (36)
where the constant Cn is determined by
¥ 1 Q)
et o | e‘{p{ f d' T e )} (37)
N = d«p ‘
-0 (611 l‘lp)
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so that the integration of f; over [-00, 0] is unity. This solution has some interesting prop-
erties. First, we note that the influence of turbulence on the scalar pdf fi(yp) is expressed in
terms of the conditional expectation of the scalar dissipation rate (€11]2). Applying scaling
arguments to the scalar fluctuations, one concludes that ¢;; and  are statistically indepen-
dent at high Reynolds numbers based on the Kolmogorov's hypotheses. If this is true. it
follows that the pdf fi(y) and its width are determined essentially by the source Q(,7) and
(€11). A source Q() that is linear in p can lead to the Gaussian pdf as time goes to infinity as
expected in a homogeneous turbulence. However, this is true only for an unbounded variable
@. For bounded variables, such as mass fractions or concentrations, both the source @ and
€13 must be correlated with » so that the pdf is confined to its allowable domain. This should
be true even in the limit of infinite Reynolds number.

3.2 Nonpremixed Reacting Systems:

For nonpremixed turbulent flames, the effect of turbulence on chemical reactions is primar-
ily through the enhancement of mixing. Mixing is defined as the inter-diffusion of different
components on the molecular level. The mass fraction (mole fraction or concentration) of
component ¢ changes due to the unbalance of diffusive fluxes passing through the bounding
surface of a control volume. The flux defined in Eqn. (3) and its divergence in Eqn. (2)
are determined by the spatial gradients of mass fractions at the current time ¢. Hence, the
Eulerian frame is most appropriate for the description of molecular diffusion. Chemical reac-
tions on the other hand depend only on the local thermodynamic state, and, therefore. they
are best described in the Lagrangian frame. It is clear that there is no definite preference
to the Eulerian frame or the Lagrangian frame for the description of the combined effects
of convection, diffusion, and reactions. So far. most theoretical treatments have been based
on the Eulerian frame, but several recent approaches use the Lagrangian or a mixed Eule-
rian/Lagrangian formulation. Here we will consider the diffusion process in the Lagrangian
frame first, and the mixed formulations will be given next.
The diffusive flux in the Lagrangian frame can be expressed as

; 1 0X; 0X, 9Y,
Ja = _§ROF‘6037€6W da, Oa, Jas’

(38)
which contains the Lagrangian deformation tensors, 8X,/8a s, and the Lagrangian gradi-

ents, 8/0a,. The Lagrangian deformation tensors can be further expressed in terms of the
Lagrangian deformation rates as follows:

oX . t oV,
2 = 8q, 1 Y(a, 7).
6(13 bad + /(; a T(?ag (g_ T)

Substitution of this expression into Eqn. (38) leads to

”r

‘ 1 ] ooV
Jo = —gRorifaﬂwfﬁnw(bﬂfl +/ dr-é——d(g, ™)
Z 0

ay



oV, aY;
(57‘.;-}-/ (17'&—)-(;:( ))E (39)

This equation shows that the influence of velocity fluctuations on the diffusive flux is through
the deformation rate histories along the pathline of a material point a. It is evident that
in turbulent flows. the fluctuations of flux .J} are due to continuous changes of the mass
fraction gradients and the deformation rate tensors. Note that the mass fraction gradient is
time independent if the mass fraction Y; itself is a material property (i.e.. no diffusion and
no sources). Hence, the temporal fluctuation of 9Y,/da, is solely due to the diffusion process
and various production sources, such as chemical reactions. If the density changes are small,
the fluctuations of the Lagrangian deformation rate tensors are dictated essentially by the
conservation of momentum and mass. For large density fluctuations, significant modification
of X ,/0ajy is likely to happen due to the large fluctuations in the thermodynamic variables.

From system dynamics point of view. the evolution of turbulence can be described as a
point in the phase space spanned by the Lagrangian position X(a) and the pressure P(«). If
the Reynolds number is sufficiently high, there exists a region in the phase space that attracts
all the states of turbulence irrespective of their initial conditions. This phenomenon exhibits
several interesting properties, which also appear in the strange attractors of low dimensional
dynamical systems. In particular, the turbulent flows are shown to be very sensitive to their
initial conditions. Consequently, the magnitude of the deformation rate tensor, 0.X4/das,
can be very large because material points that are initially close to each other can drift far
apart due to turbulent motion.

The mixed formulation of the transport equation for the mass fraction Y; is given by

R(aY‘) =9 2 L ROy, (40)

ot X, [ 'OX,

This equation shows that following a material point, the time rate of change of Y; is balanced
by the diffusion process written in the Eulerian frame and by the chemical reactions expressed
in the Lagrangian frame. The mixed formulation reduces to the kinetic rate equation for a
closed reacting system in the absence of diffusion. The interpretation (but not the value) of
the diffusive term is frame dependent. In the Eulerian frame only the mass fractions Y, are
dependent variables, and hence they are stochastic: in the Lagrangian frame, both Y; and
X are dependent variables, and hence both are stochastic. This suggests that modeling the
processes in Eqn. (40) can be carried out in the Lagrangian frame with ratios of random
variables as in Borghi's M.I.L. (1988) model.

Complete mixing is achieved if there is no scalar fluctuation. Therefore, nonzero scalar
fluctuations indicate imperfect mixing, and they can be used as an indication of the degree
of mixing (the mixedness) (Bilger 1976). In the Eulerian frame, the transport equation for
the scalar variance can be expressed as following

ay‘u? . ay’n2 , a —
: ~ [} - ’“y "2
(p> at + <p>ld' al‘a BIQ((p>la H )
oY,
NS S . 41)
( >la}1 aIa (/))E, (
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where
JY; oY, >
"0r4 Or g4

denotes the density-weighted expectation of the scalar dissipation. As the scalar dissipation
is always positive, it is clear that the scalar dissipation term reduces scalar variance: hence.
it promotes mixing. This can be better described in terms of the mixing parameters defined
as

{(p)é, = (pT (42)

LA el]

a,-,:-%. i <. (43)
ity

It is instructive to consider a binary reacting system which is homogeneous at the macro

scales but not at the micro scales. For such a system, the following mathematic constraints

are satisfied

Y/'+Y/=0. Y +¥, =1,
a -—
0o

Using the first two conditions, the mixing parameters for a binary system can be written as

0, and Y"lzconstant.

—

}"112
a1‘2=-._1—.._ N Ogalzsl. ) (44)
i(l-1y)

If the two species are totally segregated (i.e.. no mixing at the molecular level), a3 is simply

equal to one as the maximum value of Y% is Yi(1 — Y;). In the opposite case of perfect
mixing, a1 = 0. Using the transport equation (41), a time evolution equation for a2 can

be derived as 5
(a4 ~. -
9;2 = -1 Y1 (1 -1),

which shows that oy, is always decreasing in time as the mixing process progresses at the
molecular level. For reacting systems of multi-components, the values of «;; are not simply
bounded by zero and unity, and they may even change signs in the flow field according the

correlations Y Y/' (see Section 5.0).

Mixing Models
The pdf methods (Pope, 1985; Borghi. 1988; Kollmann, 1989) offer an attractive framework

for theoretical and computational studies of turbulent reacting flows since they do not require
modeling of the mean chemical reaction rates. We will restrict our discussions to the single
point pdf method. In particular, the joint scalar pdf method will be considered because
the central issue in this paper is the influence of turbulence on chemistry. It has been
demonstrated that the effect of turbulent mixing can be described by

oh =—Zl:zl:a—2((€'k|<?1 v f1) (43)
0t / mis Opjer T ’

=1 k=1
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which shows the joint scalar pdf is transported in the scalar space due to mixing and, more
importantly, the shape of fl becomes narrower in time. [t is worthy noting that the transport
equation (45) represents a time-inverse diffusion process in the scalar space with the diffusion
speed determined by the conditional expectation of the scalar dissipation rates. Consequently.
the initial value problem posed by Eqn. (45) is difficult to solve by the traditional finite-
difference methods as the numerical errors tend to grow exponentially. Fourier transformation
of Eqn. (45) leads to the equation for the characteristic function m;

where m, is defined by

{

ml(kvt)=/“'/dw--~d¢1f1(ﬁ.t)e><p(izkjw)-

=1

and the asterisk denotes convolution. Restricting our consideration to [ = 1 and assuming
(€11l¢) independent of o, we obtain an analytic solution for f; as

t
filp,t) = \/%/dkml(k.O)exp{ikQﬁ- kQA dr{en)(7)}.

This solution indicates that if m; is initially non-Gaussian, high wave-number components
can be amplified exponentially in time. This implies that the numerical errors in the high-
wave-number range will grow exponentially, and eventually the solution becomes unstable.
The major conclusion is that closure models for mixing should not be based on the time-
inverse diffusion equation. Consequently, most mixing models developed so far are of integral
form.

Integral Mixing Models
Any closure model for the mixing term in Eqn. (45) should possess as many as possible the
important features of the exact term. Strict mathematic requirements demand the model to
satisfy the following realizability conditions:

1. The pdf remains non-negative.

2. The pdf remains normalized.

3. The domain of definition of the pdf remains unchanged. (The values of pdf do not migrate

outside the allowable domain, which are often dictated by the conservation laws.)

These realizability conditions ensure the solution of the modeled pdf equation satisfy all the
basic mathematic constraints of a pdf. The physics of mixing must be introduced as additional
requirements for the closure model. The exact equation (45) can be shown (Janicka et al..
1979; Pope, 1983) to reduce the higher moments of a pdf such that in the limit ¢t — oc
the Dirac pseudo-function is produced. A closure model that is able to fulfill the above
requirements can be constructed as follows. Three basic assumptions are made here:
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1. Mixing proceeds by pairwise interaction of fluid volumes (elements, notional particles)
that are small compared to the volume of the flow domain.

2. Local chaos prevails so that the probability of finding n > 2 fluid volumes with specified
properties in a given (small compared to the flow domain) neighborhood is the product
of the n pdf values for these properties.

3. The time scale for the mixing process is independent of the scalar values involved in the
MiXing process.

It can be shown that a closure model that satisfies all these three assumptions has the following

form (Kollmann, 1989)
a i 1 ; ¢ " ' "
(%) = —{/ d,:’/ do" fil ) file"T (9" 2" — 2)
miz T IR T IR
—fl(ﬁ)}~ (46)

where R denotes the domain of allowable scalar space. The essential properties of the mixing
model are contained in the transition pdf T and the time scale r. A general form of the
transition pdf T can be cast as (Pope, 1985)

a(£'+£”)], (47)

N -

1

T(ﬁ',ﬁ" — )= / da;l(a)d[f_— (1-— a)ﬁ' -
0

where A(a) is a pdf defined within [0.1]. The random variable a controls the amount of

mixing taking place during the pairwise interaction. The construction of the mixing model

is now reduced to the specification of A(a) and the time scale . If we set

Ala) = §(a - 1), (48)

Eqn. (47) reduces to Curl's (1963) droplet interaction model, which is compu_tationally
efficient but has well known deficiencies ( Kollmann. 1989). Dopazo (1979) and Janicka ¢t al.
(1979) suggested

Ala) =1, (49)

which randomizes the extent of mixing and overcomes the deficiency in Curl’s model. Sub-
stitution of Eqn. (49) into Eqn. (47) yields a new form for T as

T(' " = ) = { | 2" =g |7 for g €[] (50)
- - - 0 otherwise.

Both Eqn. (49) and Eqn. (50) indicate that an equal probability is assigned to any value in
the interval [¢’, 2"]. This model has been applied to a wide range of flows (Pope, 1985: .191195
and Kollmann, 1987; Chen and Kollmann, 1989.a,1990), but it causes the higher normalized
moments,




(m > 4) to diverge as time goes to infinity in decaying homogeneous turbulence (Pope, 1982).
A possible remedy for this defficiency has been suggested by Pope (1982) as follows. If the
probability of finding elements with the values > at a given location is biased with the age of
the element (time elapsed between mixing interactions normalized with an appropriate time
scale), then bounded limits for the normalized moments ., can be achieved.

Time Scales

The time scale r for the mixing event to take place depends on the turbulent flow field and
the scalar field. If one assumes that the time scale ratios between the turbulent flow field and

the scalar field,

e
R=lult (51)
(p'?) €
are constant and independence of kinetic sources, then the time scale T can be given by
k .
r=C.— (32)
€

with C denoting a constant of order unity. This assumption was found to be reasonably
good for nonreacting free-shear flows, but it becomes questionable for reacting flows (Borghi,
1988). There are several possible approaches to improve the model of time scales. First, the
transport equation for the scalar dissipation can be included in the closure model (Lumley.
1978 and Dibble et al. 1986). Therefore. the effects of heat release on the scalar dissipation
(or on the time scale) can be included in the model (Dibble et al., 1986). However, this
approach has not been successful. Alternatively, the time scale information can be carried by
one of the variables in the pdf. This can be done by using the two-point pdf approach {Ievlev.
1973; Pope, 1985; Kollmann and Wu, 1987) or by including the scalar dissipation rate in the
pdf (Meyers and O’'Brien, 1981; Pope, 1989). Both approaches are currently under intense
development.
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3.3 Premixed Reacting Systems

The theory of laminar premixed flames is well developed (Williams, 1985). Laminar premixecl
flames with a high activation energy are thin, and their structure consists of a preheat zone
with negligible combustion and a thin reaction zone (Pope 1987). The laminar flame speed
uy and the thickness e; can be determined entirely by the diffusivity T’ and the chemical
time scale v, (Borghi, 1988). Flames with low activation energies are more complex, but
the notions of flame speed and flame thickness are still valid. With the help of «; and €.
the structures of turbulent premixed flames can be analyzed in the Klimov-Williams diagram
(Borghi, 1988; Williams. 1989), where the ratio Arl/z/th over l; /e, or the Damkoehler number

D, = — (53)
kzr,
over the Reynolds number
1
Re = M2l (54)
14

is plotted (k denotes the kinetic energy of turbulence and [, the turbulent macro-scale).
Several important regimes can be identified. For large values of /,/¢; with low to moderate
turbulence levels, turbulent premixed flames can be described as an ensemble of wrinkled
flames. The effect of turbulence is essentially through the increase of flame front area per
unit volume without significant changes in the flame structure. As turbulence intensity
increases, pockets of fresh gases can form inside the burned product if the rate of pocket
formation (determined by turbulence parameters) is approximately the same as the rate of
pocket consumption (determined by chemical and turbulence parameters). This regime is
called the corrugated flame regime (Peters, 1986). As turbulence intensity increases further.
thick flames with their thickness larger than the micro scale of turbulence can form, and
turbulence can significantly modify the local flame structure.

As discussed above, the effect of turbulence on premixed combustion ranges from distor-
tion and wrinkles of thin flame fronts to complex interactions with thick combustion zones.
Predictions of premixed turbulent lames have been explored by Pope (1987) with pdf meth-
ods, which are particularly well suited for the latter regime. However, traditional moment
closure methods have been useful in treating the flame sheet combustion regime. Two models
will be discussed briefly.

The BLM Model
The BLM model (Bray, Libby and Moss, 1985) proposed the concept that the progress of
the reactions can be described by a single scalar variable ¢ with certain assumptions. If the
reaction zone is thin, then the pdf of the reaction progress variable can be approximately
given by )

fileiz,t) = a(z,t)8(c) + Bz, t)6(c — 1) + v(z, t) fe(ci 2, t) (55)

with positive a, 3,4 and the mathematic constraint
a+3+vy=1.
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The coefficient a is the probability of observing reactants at the point (z,¢); 3 is the proba-
bility of finding products, and v represents the probability of a state within the reaction zone
(flame sheet). The most important assumption in this model is

v < 1, (56)

which is valid for the thin flame sheet regime. The BLM model makes the full use of this fact
so that the statistical moments can be expanded in terms of 5. It follows that

a=1-— ,‘j + O("f)

and i
l1—-c¢
147
where 7 is the heat release parameter. The model consists of the transport equations for the
mean progress variable ¢ and its variance. These equations need to be modeled. and their

solutions determine the local pdf for ¢ to first order in vy. Here, only the equation for ¢ is
considered

O(7),

(e}

(5 + ta ) =~ 01T + {4 (57)
which contains two terms that need modeling, the turbulent flux v¢” and the mean kinetic
source w. Detailed modeling of the turbulent flux will not be repeated here and it can be
found in Bray, Libby and Moss (1985). Since w(0) = w(1) = 0, one needs to estimate the
contribution from the continuous part of the pdf f. (flame sheet contribution). A special
form of f. can be constructed if the reaction zone consists of randomly convected, wrinkled.
but unstrained laminar flamelets (Bray et al., 1985). More recently, Bray et al. (1989) have
proposed to model the mean reaction rate directly. Two approaches have been considered
for this direct closure method. First, the mean reaction rate is represented as the product
of the crossing frequency of the interface at a given point and the chemical reaction rate
per crossing. Second, the mean source terms can be treated as the product of the average
number of flamelets per unit length (in the neighborhood of the given point) and the chemical
reaction rate per unit length. In both proposals, the essential issue becomes the modeling of
the topology and geometry of an interface embedded in a turbulent flow. This aspect will be
discussed in the next section.

The Coherent Flame Model

The basic concept of the coherent flame model proposed by Marble and Broadwell (1977) is
the notion of laminar flamelets, which are transported and distorted by the turbulent flow
field, but retain their identifiable structures. This concept provides an alternative way to
model the mean reaction rate ;. The key parameter in calculating the ; is the mean flame
surface area density l:]f defined by (Darabiha et al., 1989)

0S

Y= 11 -,
f Ml’To %
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where 65 denotes the surface element and §V" is the volume element centered at r. This
definition deserves further explanations. First, the reaction zone is represented by a surface
on which the instantaneous reaction rate assumes a prescribed (nonzero) value. For finite
Peclet and Damkoehler numbers, this surface is a differentiable manifold. Let’s consider
an arbitrary point (r,t) in the flow domain and let L (r) be a sphere of radius r (volume
element 6V') which is centered at r. If the sphere intersects a flame surface, then we can find
a radius r small enough so that the intersection of the surface with the sphere looks like a
plane. Based on the properties of a differential manifold, there exist two possibilities for the
instantaneous value of Zf. One possibility is z being on the surface; then

ar? 1

~—=—=0oc as r — 0.
im .3 r
T

L~

The other possibility is & being outside the surface; then there exists a radius r, such that

“~
2

ir
3
for all r < r,. Hence, £; can have only the values oc and zero. It is not clear whether
or not T has a mean value, because the value co must associate with the zero probability
in order to produce a nonzero mean. However. random variables can be constructed with
the properties of £ leading to a nonzero mean but no higher moments (Kollmann, 1989).
Therefore, the properties of T are dependent on the characteristics of 6S5/6V as the volume
0V is shrunk to the point r under consideration.
The transport equation for the mean surface area per unit volume can be derived from
the equation for the surface element with the assumption that the correlations on the right
hand side exist, and the result is

s oS 0 — — i
<”><797’ + f’aaxf>= 5= ((p)ehT)) — {pInanssasts (38)

where n is the normal vector of the surface and s,3 denotes the strain rate. The source
term poses an intricate closure problem as turbulence can change the flame surface area by
straining, extinction, and mutual annihilation (Darabiha et al., 1989). The proposed closure
model for the mean reaction rate is then given by

W; = vp; Sy, ~(39)

where vp, is the volume consumption rate of species i per unit flame area and it is obtained
from calculations for a laminar flame. Several refinements of Eqn. (59) can be made by
including the dependence of vp; on the strain rate and temperature, but they will not be
addressed here. ‘



3.4 Theory of Embedded Surfaces

It becomes clear from the previous sections that a certain class of surfaces embedded in tur-
bulent flow fields plays a fundamental role in determining the progress of chemical reactions.
Experimental data obtained from mixing layers and jets indicates that the topology of sur-
faces embedded in turbulent flows can be rather complicated (Dahm and Dimotakis. 1985:
Dimotakis, 1989). A closer examination of the topology and geometry of surfaces is therefore
warranted. Surfaces can be defined implicitly by

U(r,t)— ¥, =0,

where ¥(z,t) is a variable relevant to combustion. For nonpremixed combustion, ¥ can be

the mixture fraction and ¥, its stoichiometric value. For premixed combustion ¥ can be the

reaction progress variable and ¥, being its value at the maximum reaction rate. The variable
¥ is governed by the transport equation (2) which includes effects of convection, diffusion
and production. Equation (2) leads to the following classification of iso-surfaces:

(A) If the flux J! and the source Q; are zero, then the surface is materially invariant. If the
velocity vo(z,t) is sufficiently smooth (at least once differentiable), then the topology of
the surface is preserved in time, because the solution of Eqn. (2) provides a diffeomor-
phism of the surface. However, the geometrical properties (curvature, torsion etc.) of
the surface can change drastically.

(B) If the flux J! is nonzero but the source Q; is zero, then the surface is not materially
invariant but moves through the fluid with a speed determined by the local diffusive flux.
The Fick’s law Eqn. (3) for the diffusive flux implies that J! is normal to the surface.
It is possible that the topology of surfaces can be changed due to diffusive reconnection
(Ashurst and Meiron. 1987).

(C) If both J! and Q; are nonzero, then in addition to the relative motion through the
fluids, the surface can change its area due to the source term @;. Both topological and
geometrical changes are possible.

(D) The surface moves with an arbitrarily defined velocity relative to the fluid. This is the
most general case, in which both self-intersection and loss of orientability of the surface

are possible. Furthermore, only the progression velocity on the surface needs to be
defined.

Relative Progression Velocity of Iso-surfaces

The relative progression velocity at which the iso-surface moves relative to the fluid i case
(C) can be expressed in terms of the diffusive lux and the source strength. To this end. we
introduce the indicator function I(z,t)

>
I(g,t):{l for ¥(r.t) > ¥, (60)

0 otherwise,
and define the relative progression velocity V(z,t) as
Ving =vge —vl. (61)

o
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where v, denotes the fluid velocity, v2 is the velocity of the iso-surface, and n, is the normal
vector of the i1so-surface defined by

vV
= —, V| #£0. 62

It can be shown (Byggstoyl and Kollmann, 1986) that

% = —vong |V - ¥,) (63)
and o
£ =na|VU§(T¥ - ¥,). (64)

Combining Eqns. (63) and (64) one obtains

ol oI _
—_ )3 = 6
ot * o D, 0. 163)
and DI
— = V|V — ¥,). (66)
S = VIVE(E - ¥,)
From Eqn. (60), we can also express DI/ Dt as
DI DV -
== = — P, —. (67)
Dt o(¥ ) Dt

Eliminating DI/Dt from Eqn. (66) with Eqn. (67). we get an expression for 1 as

1 a7,

= —(— ). \I}.,t:q’o (68)
IV‘I’l( a$a+Q,) (z,1)

with |V¥] # 0. Equation (68) shows that the relative progression velocity depends essentially
on the gradient of ¥(z,t) at the location of the iso-surface. The treatment for case (D) is
different because the relative progression velocity is given and an expression for v, or its mean
value is derived. This problem has been studied by Ixerstein et al. (1988) for the special case
with a constant V' in homogeneous turbulence.

Topology of Embedded Surfaces
Properties of surfaces that do not change under continuous one-to-one mapping are topo-

logically invariant (i.e., a homeomorphism). We note first that the iso-surfaces that are
interested in turbulent combustion are ‘closed’, i.e., they do not have boundaries (holes) as
a consequence of the smooth (differentiable) variation of the defining scalars. Now let's con-
sider the homeomorphisms defined only on the surfaces. The relevant topological properties
are (Seifert and Threlfall, 1934; Rushing, 1973):
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(1) Connectedness: The number of closed, connected surface components that form the
complete surface.

(2) Orientability: An orientable surface possesses at each point a unique normal vector
or a unique orientation (sense of rotation). Closed, non-orientable surfaces which are
embedded in a three-dimensional Euclidean space must intersect themselves.

(3) Genus: The number of closed cuts that can be made without disintegrating the surface
into disconnected parts. For instance, a sphere has a genus value of zero and a torus has
a genus value of one.

Surfaces can be shown to be homeomorphic to spheres with attached handles (tori) and

crosscaps (Moebius bands attached to circular holes in the sphere). Furthermore, surfaces

can be triangularized and then analyzed by calculating the Euler characteristic function

\=V -E+F, (69)

where V' denotes the number of vertices, E is the number of edges and F is the number of
triangles. Y is a topological invariant (hence the same for the original and the triangular-
ized surface) and changes with the number of handles and crosscaps. It can be shown that
two surfaces, either orientable or non-orientable, are homeomorphic if they have the same
characteristic function (Seifert and Threlfall, 1934).

Surfaces embedded in a topological space, such as in a three dimensional Euclidean
space, can also be classified according to their structures. This leads to the consideration
of homeomorphisms defined for the embedding space and for the surface. Surfaces with the
same orientability and characteristic can be further classified according to the types of knots,
links and braids present (Moran, 1983). Links and braids may be of particular importance in
turbulent shear flows with and without combustion. Flow visualizations in plane mixing layers
show that braided vortical structures are the linking mechanisms between the large-scale
structures and the lateral vortices. Furthermore, in these braided vortical structures. there
are tube-like domains, where viscous interaction occurs. Therefore, topological change can
take place if these braided structures are brought together sufficiently close by the convection
process.

Gibson (1968) pointed out the importance of extremal sets of scalars in turbulent flows
and showed that they appear as isolated points (local extrema and saddle points) and lines
(saddle lines). Consequently, Kerstein (1982) used this result to construct a model for an
iso-surface as the boundary of the Voronoi tesselation created by the extremal points. The
Voronoi tesselation is essentially a simplicial complex and, therefore, it is amenable to the
methods of algebraic topology. Here, a fascinating problem arises which warrants future
investigation: the relation of interface topology to the distribution of extremal points in
turbulent flows. Closely related to the geometric topology of interfaces is the measure and
dimension of such surfaces. Fractal concepts have been proposed (Gouldin, 1988; Srinivasan
et al., 1989) to explain the variation of surface area with scales, but the question is far from

settled (Miller and Dimotakis, 1989).



4.0 The Influence of Chemical Reactions on Turbulence

The dynamics of turbulence can be affected by chemical reactions if the heat release due to
chemical reactions is large enough to cause noticeable density changes. This implies that
significant density fluctuations can be expected for strongly exothermic gas-phase reactions.
The turbulent velocity field can be modified by the chemical reactions via two processes. First.
density fluctuations can modify the acceleration of fluid particles; that is, the light-weight
fluid particles are accelerated faster than the heavy-weight fluid particles even under the
same pressure gradient and the viscous stresses. Second, the pressure field can be modified
via the state relation, which links pressure, density and temperature together. These two
processes are difficult to model and they will not be considered here (Pope, 1985; Borghi.
1988; Williams, 1989; Bray et al., 1989).

5.0 Pdf Modeling of Nonpremixed Methane Jet Flames

The interactions of turbulence with finite rate chemistry will be examined here, particu-
larly, in turbulent nonpremixed methane jet flames. As our current computer capabilities
do not permit a detailed chemical scheme to be incorporated in turbulent combustion mod-
els, simplified reaction mechanisms are needed. Peters and Kee (1987) developed a simplified
mechanism for methane-air combustion based on the assumptions of a steady state for certain
intermediate components and the partial equilibrium for two reaction steps. The simplified
mechanism contains the following four global steps

CHy+2H + H,O = CO + 4H,, (I)
2H+ M = H,+ M, (III)
0, + 3H, = 2H + 2H,0 (IV)

With the assumption of equal diffusivity, this mechanism requires five scalar variables ¥ (., )
to determine the local thermodynamic state. They are chosen as follows: ¥; = § (mixture
fraction), ¥5 = neya, Y3 = neo, ¥y = n, ¥s = ny, where n denotes the number of moles
per unit mass. To explore the pdf methods, we use a combined scheme which consists of
a Reynolds stress closure (details are in Dibble et al., 1986) and the joint scalar pdf model
for Eqn. (30). The Reynolds stress closure provides the mean transport properties and the
time scale that are needed in the pdf model. In return, the pdf yields the mean density. The
turbulent flux in Eqn. (30) is modeled by a gradient type formula

" F oA ’: ’,',V,,af -
_(p>(vall1/j=‘pj>fl _—'Cs(/))EUavg'é;j- (70)

We incorporated the nonlinear interaction model to model the effects of molecular mixing
as discussed in Section 3.2 for Eqn. (46). The effects of chemical reactions on the pdf
are modeled by by moving the pdf position in the scalar space according to the chemical
reaction rates of (I) to (IV) (detailed expressions can be found in Peters and Kee, 1987).
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The boundaries of the set of realizable states in the scalar space are rather intricate but can
be defined mathematically (Chen et al., 1989). A detailed comparison of the first and second
order moments with the experiments of Masri et al. (1988) can be found in Chen et al.
(1989). The numerical solutions enable us to evaluate the mixedness parameters defined in
equation (43) and to compare the mean reaction rates with their corresponding quasi-laminar
rates.

The mixedness parameter a;; is plotted at r/D = 20 for several combinations of reactants
as shown in Fig. 1 to Fig. 3. We note first that the a;; are not positive definite for multi-
component (more than two) mixtures in contrast to those in a binary mixture. It follows
from the definition of a,; that negative values indicate that both components exceed the
local mean, whereas positive values indicate that one of the components exceeds the local
mean and the other component is below the the mean. Positive mixedness values indicate.
therefore, the lack of mixing and negative values correspond to the state of good mixing.

Fig. 1 reveals the degree of mixing between CH, and several other components. It is
clear from this figure that CH, is not well mixed with the intermediate components and the
product H,O in the inner parts of the flame, but they become mixed in the outer parts of
the flame. Therefore, reaction (I) proceeds in the forward direction if CHy is well mixed with
H and H,0 and in the backward direction if CH, is well mixed with CO and H,. However,
the forward rate is larger than the backward rate over the cross section (see Fig. 4). The
mixedness of CO with the components involved in step II is shown in Fig. 2. It is clear that
mixing is good for all three components in the outer parts of the flame.

The mixedness of O, with the active components involved in step IV is positive through-
out the jet indicating the lack of mixing. The comparison of the mean reaction rates with
the quasi-laminar rates for the four steps I to IV is presented in Fig. 4 to Fig. 7 showing
clearly the strong influence of turbulence. In particular, the second step in Fig. 5 and the
third step in Fig. 6 illustrate that turbulence can greatly enhance the average rates. On the
other hand, turbulence can also reduce the average rate compared to the quasi-laminar rate
as evident in Fig. 7.
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6.0 Conclusions

The interaction of turbulence and chemical reactions is a complex phenomenon that can cause
significant modification in both the turbulence and the chemical reactions. For chemical reac-
tions with negligible heat release, this interaction has only one direction; that is, turbulence
will modify the chemical rates, but the reactions have no influence on the flow field. However,
the purpose of combustion is to generate heat in a short period of time; therefore, combus-
tion processes usually cause strong density variations. Hence. the turbulence will experience
strong influence by the chemical processes and vise versa.

The influence of turbulence on the chemical reactions is the main topic in this paper.
First, the basic governing equations of the dynamics in turbulent combustion are outlined
in the Eulerian frame. The corresponding transformation to the Lagrangian frame has been
presented with the aid of the Lagrangian position field. It was shown that in the Lagrangian
frame, the transport equation for a thermo-chemical variable does not contain the nonlinearity
due to convection, but the diffusive flux appears as a highly nonlinear process depending on
the time histories of the Lagrangian strain rate.

The influence of turbulence on the chemical processes is expressed by the statistical
moments that appear in the mean reaction rate. Upper and lower bounds for the mean
reaction rate were obtained for a binary mixture. It was shown that the mean reaction rate
can have values radically different from the quasi-laminar values (reaction rate at the mean
properties). The influence of temperature fluctuations on the mean chemical reaction rate is
shown to be significant for reactions with large activation energies at a low mean temperature.
Furthermore, it was shown that the pdf equation for a single reactive scalar can be solved for
a homogeneous turbulence. The solution indicates that for bounded scalar variables, a scalar
and its dissipation rate must be correlated in order to satisify the realizability conditions.

The analysis of nonpremixed flames illustrated the important role of mixing in deter-
mining the progress of chemical reactions. Mixedness parameters were introduced and the
mixing models for the single point pdf methods were discussed. The main conclusions drawn
from the studies of nonpremixed reacting systems are that the mixing models must satisfy
realizability conditions and that they must represent the effect of turbulent mixing correctly
at least for lower order moments. Furthermore, the current model for the turbulent time scale
associated with the mixing process is rather crude as it neglects the possible modification due
to heat release. Several approaches for overcoming these shortcomings are indicated.

The treatment of premixed systems was restricted to the flame sheet regime. In this
regime, the effect of turbulence is essentially through the distortion of the thin flame sheet
leading to increased flame surface area. Predictive models for premixed turbulent flames are
discussed.

The interaction of turbulence and chemical reactions in nonpremixed and premixed com-
bustion can also be described in terms of the effects of turbulence on surfaces, in particular,
the flame surfaces. Hence, the basic dynamical and topological properties of surfaces were
introduced. It was shown that for flame surfaces, both the diffusive flux and the chemical
sources can alter the relative progression velocity of such surfaces. Finally, the topological
classification of embedded surfaces was discussed briefly.

We used nonpremixed turbulent methane-air jet flames as an example to illustrate the
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mixing properties predicted by a pdf method. It was shown that the mean reaction rates
can be larger or smaller than the quasi-laminar rates by orders of magnitude due to the
effect of turbulence. From the computation results. the predicted mixedness parameters were
examined showing that they are not positive-definite as in binary systems.
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Fig. 1. Mixedness parameter a;; in a turbulent methane-air nonpremixed flame at z/D =

20 using the four step mechanism of Peters and Kee (1987) for:
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Fig. 4. Mean kinetic source (full line) and quasi-laminar source (broken line) in a turbulent
methane-air nonpremixed flame at z/D = 20 for reaction I of the four step mechanism of
Peters and Kee (1987).
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1.0 Introduction.

Kraichnan’s idea to apply mappings as tool in constructing closures for pdf equations (Chen
et al. 1989, Kraichnan 1990, Feng 1991, Pope 1991, Valifio et al. 1991) proved very successful
for the case of a single scalar variable in homogeneous turbulence. It is not vet clear how
powerful this approach is for the case of more than one variable (Pope. 1991). The rigorous
theory on the functional level requires the determination of the probability measure governing
the dynamics of turbulent flows. This measure is defined in a function space, that contains
the set of all realizable flow fields. It can be constructed as a measure relative to a Gaussian
measure or any other reference measure. It follows that the probability measure can be
regarded as the image of a Gaussian measure. The underlying mapping contains. therefore.
the essential information on turbulence. It is apparent that turbulence can be viewed as the
mapping of appropriately defined function spaces. The structure of those function spaces and
the mapping relating them deserve closer scrutiny.
The notion of a mapping can be exploited in two distinct ways:

I. The mapping is known and both the original and the image variables are the unknowns.
The prime example for this case is the linear map provided by Fourier transform which can
be extended to functionals. The resulting equation for the case of the probability functional
is the Hopf/Kolmogorov equation for the characteristic functional.

II. The mapping is unknown and either the original or the image variable is known. The
prime example for this case is Kraichnan’s method which is based on the well known relation
between mapped and original pdf depending on a single variable

fa(n

ld—‘l

fly) =

where ¢ = X(n,t) and fg(n) is the Gaussian pdf. The extension of this method to the
multi-dimensional case and to functionals is not obvious. The task of constructing a mapping
between function spaces can be daunting and it is instructive to consider several examples to
illustrate the properties of mappings. Fourier transformation, regarded as solution of the so
far unspecified mapping equation, provides an example for the mapping of the space L? of
square integrable functions defined in R? onto itself

r.2)®(z2)

|n

where z,z € R® and ®(z), ¥(z) € L%(R®). The image field ¥(z) is a complex valued square
integrable function deﬁned on R®. The value of the image field ¥ at a location z € R?
depends on the values of the argument field ® at all locations z € R3. Hence has the
mapping induced by Fourier transformation functional (or nonlocal) character. Mappings of
this type are denoted by

P(z,t) = X[®(.); 2, ]
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where the semi-colon separates functional arguments from parameters. A different example
is provided by
W(z) =exp(®(z))

which has local character. Locations in argument and image fields are the same and a change
of the argument field ®(z') at a location z' # : has no influence on the value of the image
field at z. Local mappings are denoted hy

where

is a mapping of R? onto itself. It is clear that the computational effort for functional and local
mapping can be expected to be widely different. The comparison of a functional mapping
with the probability functional indicates that the image domain for the mapping is a function
space whereas the image domain for the probability functional is the unit interval. This
indicates that the computational effort for the calculation of the mapping may be equal or
larger than the effort for the probability functional. However, it should be noted that the
Gaussian characteristic functional can be set up explicitely and the notion of the determinant
can be extended to the case of countable infinite many variables (see Muldowney, 1987 and
Skorohod, 1974), thus offering an avenue for theoretical investigations.

Three aspects of turbulence involving mappings will be discussed in detail before the
mapping equation is investigated. First, the basic laws (mass and momentum balances) are
set up as equations determining a mapping of the flow domain at a reference time onto the
domain at a later time. This mapping is a diffeomorphism as long as the smoothness of the
solution of the Navier-Stokes equations is insured. In addition, incompressible flows generate a
measure preserving diffeomorphism due to the particular form of mass balance. This mapping
is, however, fundamentally different from the mapping employed by Chen et al. (1989) who
map the phase space spanned by the solutions of the Navier-Stokes equations onto a reference
space equipped with a Gaussian measure. Second, the properties of Gaussian measures are
reviewed and finally transformations of the function space containing the solutions of the
Navier-Stokes and Euler systems are discussed.

The mapping method suggested by Chen et al. (1989) is the reviewed for the one-
dimensional case. It is shown that it corresponds to a convolution of the characteristic
function and the mapping equation for it is derived. The multi- dimensional case is then
considered in detail.



1.1 The basic laws as mapping equations.

The basic laws for a single incompressible fluid are introduced in the material (or Lagrangean)
frame. The independent variables in the material frame are defined as time 0 <t < T aund
label @ € A4, where A is the label space to be defined. The label identifies uniquely a material
point in the flow field. There are many ways of defining a label and for each definition a
different set of variables emerges. The present definition for the label space A is the position
of all fluid material points at a reference time zero. The label space is now the fluid volume
at the reference time zero

A= {X: Position of a material point at t =0} (1.1)

and the mapping X : A — D(t) is assumed to have the following properties (Kreiss and
Lorenz, 1989): X(a,t) is for ¢ € A and a nonzero time interval a smooth ( continuously
differentiable) function satisfying

(i) X(a.0) =a

(ii) If a # b then X(a,t) # X(b,t) for t > 0.

(ii1) The mapping @ — X(a,t) has a smooth inverse XL
The set of independent variables in the material (sometimes also called referential frame for
the present chioce of the label space) frame consists therefore of time ¢ and the position
a) at time zero. Note that the size of the time interval for which the mapping X remains
smooth is related to the existence of smooth solutions of the Navier-Stokes equations. There
is no general existence proof for three-dimensional flows except for finite time intervals. whose
length depends on the inital data, and we must keep in mind that the smoothness may break
down in finite time and the conditions (ii) and (iii) for the mapping of the label space onto
the fluid volume at later time may be violated. The position X(t, a) of a material pomt 1s
considered a dependent variable in the material frame.

The time rate of change keeping the label variable g constant is in the material frame
the time rate of change measured by an observer moving with the material point. It follows
that velocity i1s defined by

Vit = % (12
and acceleration by

Mass balance in classical mechanics is the requirement that mass cannot be created or de-
stroyed and appears as .J = 1 or

80X, 0X,;0X,

‘ , =6 ' (1.4)
CodyClnw Jas Oa, Oa,

where J denotes the Jacobian of the mapping X(a,t). Momentum balance is the consequence
of Newton’s second law and can be shown to govern the temporal evolution of the mapping
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It follows that the material frame version of the Navier-Stokes system set up in terms of po-
sition and pressure fields can be regarded as the equations determining a measure-preserving
mapping X(a,t) : D(0) — D(t) (where D(0) denotes a measurable subset of the flow do-
main at time zero) of the flow domain at the reference time onto the domain at a later time.
This mapping is smooth as long as the solution remains smooth. The role of the pressure in
this system is to preserve the measure of any measurable subset of the flow domain. This
property is lost in compressible flows where the volume of a materially invariant subset of
the flow field may change in time. The notion of mappings can be applied to compressible
flows with suitable extension of the variables to include mass and energy densities.

The mapping equations (1.4) and (1.5) show that the dynamics of a nonlinear phe-
nomenon can be viewed as the evolution of a mapping governed by a nonlinear system of
equations. The solution of (1.4) and (1.5) allows to determine the image of any measurable
subset of the original flow domain as a function of time.

2.0 Basic Considerations.

The notion of mappings can be extended to relations between function spaces and a general
equation for such a mapping can be derived. It is worth noting that the mapping equation
for a single variable governed by the linear diffusion equation and taken at a single point is
linear (Chen et al., 1989 and Pope 1991) but not exact. It will be shown in chapter 4.0 that
this is due to the requirement that the single point statistics of the image of the Gaussian
random fields is equal to the single point statistics of the unknown turbulent fields. The
extension of this closure procedure to multi-variables and multi- point pdfs and the passage
to the functional level requires some preparations. This will be done in the present chapter.
It is well known that the Lebesgue measure has no extension to infinitely many variables.
hence there is no obvious extension of the cdf equation (derived in the next chapter) to the
functional level since it contains multi-dimensional integrals whose limit for infinitely many
variables is not defined. The pdf equation on the other hand can be (at least formally)
extended to the functional level. It follows that the pdf equation and its Fourier transform
(characteristic function) are the appropriate starting point for the development of mapping
methods for the multi-dimensional case. Furthermore, it is possible to set up explicitely the
Gaussian measure for infinitely many variables in terms of its characteristic functional and
there exists a well defined equation for the characteristic functional of the turbulence measure.
It is possible to define properly measures relative to a Gaussian measure (Skorohod. 1974). If
the turbulence measure is defined in such a way, all that is left to determine is the distortion
of the Gaussian measure necessary to produce the turbulence measure. This is nothing but
a mapping of the function spaces containing the Gaussian fields and the turbulence fields. It
is clear that these two function spaces justify attention.

(3]



2.1 Function spaces.

Consider a compact flow domain denoted by D(t) C R? with boundary 8D(t). The boundary
is assumed to be orientable and sufficiently smooth such that a normal vector exists nearly
everywhere. The surface area for the boundary dD must satisfy

0 < / dd < x
oD
and the volume of the flow domain is obviously bounded. D(t) is the domain of definition for
the turbulence fields. The domain of definition for the Gaussian reference fields is D = R?.
Cartesian coordinate systems are introduced in both domains and denoted by z € D(#) and
Z € D respectively. Various functions of scalar, vector and tensor character will be defined on
D and called turbulence fields. Functions defined on D will be called reference or argument
flelds. Various sets of fields will be considered and they will be embedded in various function

spaces. The most important Banach and Hilbert spaces will be discussed briefly. A class of
Banach spaces is given by

LP(D)={®(z)|®: D —> R'.® mea.sureable,/d£|<b(_x_)|p < oc}
D
with norm

9]0 = { [ deletoy?
D
which is a Hilbert space for p = 2 with scalar product

(@, %) = / drd(2)¥(z)
D

A different class of function spaces can be constructed by requiring differentiability up to a
certain order. These spaces are called Sobolev spaces and are defined by

W™P(D) = {®(z)|D°® € L?,|a| < m}
where D' = 8/0x; denotes the differential operator and

olel
D= —fuo-—-
gzt - Oxnn
with |a| =Y, @, and o; > 0. The norm is defined by
18llmpp= Y 1D*®lILs(p)
la|<m
For p = 2 a Hilbert space is obtained with scalar product
(2. ¥)mp= »_ [ dzD*®D¥
lal<m p

The general properties of these spaces can be found in the literature on functional analysis.
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2.2 Local and global mappings.

The aim of thls chapter 1s to discuss the properties of mappings of a separable Hilbert space

= {<I> @ continuous} with scalar product (P, lIl) onto another separable
Hllbert space H (separable means that the space has a countably mﬁmte basis). The elements
of H are the reference or argument fields and the elements of H are the image fields. The
basic requirement for mapping methods is that the statistics of the image fields agree at
least at one or several points with the turbulence fields. If they agree on all points of the
flow domain an exact solution of the Hopf-Kolmogorov equation (see Vishik and Fursikov.
1988) is obtained. This aspect will be discussed in chapter 4.0. The space H containing the
image fields is embedded in the Sobolev space H™(D). The mapping X : H — H(D) will
be time dependent because the image fields must be time dependent in order to simulate the
properties of turbulent fields. The mapping is denoted by

®(z,t) = X[B(.); z.1]

where the semicolon separates argument fields from parameters. The argument field (i) e
H, the values of the parameters t € D(t) and t > 0 determine uniquely the image field
®(z,t) € H(D) and the argument field, the location in the flow domain and time can be
varied independently. Consider now a modified argument field (%) + ehs(i — #,) where
hs€ H, e> 0 and

.. {20 for |2 -2,/ <6>0
I-2,)= ,
0 otherwise

and h € C®(R3) such that
/diha(i—io) =1

R3
holds. The image fields at the same location r and the same time ¢t are denoted by ®(x.t) =
X[®(.); 2. 1] a,nd P(z, t = X[®(.) + ehs(.); 2, t]. Two cases are now possible:

(A) ¥(z,t) # ®(z,t) for nearly all £ € Q and € > 0. The value of the image field at a
given locatxon € D( ) depends on the values of the argument field at nearly all locations
z € Q. This implies that X depends on (.) in functional fashion.

(B) There exists a subset €, C § such that ¥(z,t) = ®(z,t) holds for £ € Q, and
p3(Q — Q,) < €83 with C < 0o as § — 0 for all £ € D(t). This implies the existence of a
relation

£=Y(z,t)

such that the mapping X is local, i.e.
B(z,t) = X(®(X(£.1));£,1), z € D(t)
The special case of a local mapping
®(z,t) = X(®(X(z,t))it)

is called r-autonomous and

®(z,t) = X(®(Y(z,1)))

is called fully autonomous.



2.2.1 Properties of global maps.

Global maps are characterized by the property that the change of the argument field in a
small neighbourhood of any point #, € D leads to a change of the value of the image field
at a fixed location r € D. This functional dependence indicates that it must be possible
to express the mapping .X in terms of a functional. This can he achieved using a special
construction which leads to a subset of the set of global mappings. Consider an arbitrary
functional

A®]: HD)— R!

The value A[®] is then independent of & € D and derivatives with respect to location vanish.
Suppose now that A is Frechet-differentiable in H

— h) = lim -a—‘\[cb + €h]
69(1) =0 Je

for &, h € H. Then is the first Frechet-derivative of A a generalized function of the location
z. It follows that

fSA = X*[®(.)z], deH
6d(1)

provides a mapping of the argument space H into some function space H*(D) because keep-
ing the argument field fixed and varying the location £ € D produces a scalar field whose
smoothness properties depend on the functional A. A second step is required for the construc-
tion of global mappings based on functionals. We need to define a mapping Y : D(#) — D
which is bijective, local and sufficiently smooth. Then we can express the location in D(?) in
terms of the location in D by

z=Y(r,t)

If the functional A is defined in such a way that the fields generated by its F. rechet-derivative
are always contained in the space H™(D) for m > 0 and combining the derivative with the
mapping Y (zx,t) of the domains we can define a mapping by

SA[D(.)]

X[®(.);z,1] 581 (2. t))

Il

It is clear that global mapping do not require a mapping of the domains and for this reason
is the present construction rather special.



2.2.2 Properties of local maps.

The value ®(z,t) of the image field depends on the value of the argument field ® at a unique
location 2 = Y (z,t). If the argument field is modified at any other location no change of
®(z,t) is observed. Hence is

d(z.t) = X(®(Y(&.t). 2. 1)

a strictly local map. Differentiation of the image field can be carried out using the rules of
standard calculus. For instance, the time derivative emerges as

0% 0% 0 o,  9X
ot v T pp oy, ot ot

and likewise for the spatial derivative. Higher derivatives follow from repeated application of
these operations.

2.3 A reduction property for multi-dimensional mappings.

The closure problem for mappings can be viewed as the construction of a global map corre-
sponding to the local map which is to be determined as the solution of the mapping equation.
The relation of the global map to the local map needs clarification since they act on the
same class of reference and turbulence fields. If the global map is known we can calculate
the statistics at any number of points as the image of of Gaussian statistics. Hence. we can
calculate the statistics at a single point which implies that there exists a relation between
the mapping for a single variable and the mapping for many variables containing the single
point. This relation can be obtained as follows. Pdfs posses a well known reduction property
given by

o0 0

filen) = /d?l""/d‘PN—lfN('\r’ls"'v“r’N)

-0 —20

which must be retained if the pdfs are transformed Gaussians. Let the local mapping be
X : R' - Q, where Q denotes the range of the scalar defined at a single point in the
flow field D(t), and the global (N-dimensional) mapping XV . RN o QY then are the
one-dimensional pdf and the N-dimensional pdf given by

flyy = 150

o

and
fG(ﬂl-"'*’]N)

fN(yla"'ayN): v
89X
det(-a—nj">

9




respectively where y = X(n) and y = X(m. - .ny) bhold. Application to the reduction
property for pdfs leads to

figp) = /ds‘?l-u/(/s?.v—l(let(%‘{_i) falm.- - .ny)
on e e CREES (lft( )

AX;
n;

where the subscripts on the Jacobian matrices indicate the rank. Since the Gaussian reference
measure is the product of N one-dimensional measures it follows that

ool "0 det QL N—~1

X ! (""’f)-_ ‘

- = dpy--- don-1 Nl H fa(ni)
on EAY

holds. Denoting by dG; = dn; fg(n;) the differential of the standard Gaussian measure (zero
mean and unit variance) we get

~ - det(z&)
-1 an;
(8)() _ / G, - / dGy-1 N-1

an \,

as reduction property for mappings. It is worth noting that this relation can be extended to
infinitely many variables since the Gaussian has a well defined limit. It is easy to show that
the reduction property appears in the form (note that n = ny)

x\"' T % 5 .
(%—;) = /dG(m).../dG(nN_l)(%xN(m,...,nN)>

hade ) _—0

if the Jacobian matrices are triangular. This particular form of the reduction property
expresses the one-dimensional map for the Nt* variable ny in terms of the global or N-
dimensional map for all variables 7y, --.nn. It depends obviously on the Gaussian reference
measure.
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3.0 Transport equations for pdfs and cdfs.

Transport equations for pdfs and cdfs can be obtained using the notions of step functions
and pseudo-functions. The starting point are the basic differential equations set up in the
spatial (Eulerian) frame with respect to a Cartesian system of coordinates. Mass balance is
given by

Ov
- (3.1
or. 0 )
and momentum balance by
Ov, v, 1 Op 0*vg
—_— 4y — = —— 3.2
3 T8, T Toor. V01,02, (3-2)
A passive scalar obeys
od ad 9*®
4y _ 3.3
En + v3 6 Q(¢)+F8x36:c3 (3.3)

The flow domain is denoted by © and its boundary by 9. Consider now N distinct points
z(® € Q. We derive first the cumulative distribution function (cdf) of the values of velocity
ans scalar at those NV points in the flow domain. We define the step function

Fy=TY H(g — (" t)H(v; — vz, 1)) (3.4)
where N denotes the number of points in the flow field, H denotes the Heaviside function

1 forz>0

H(I)E{O forr <0

and the step function of a vector argument is the product of the step functions of the com-
ponents. It is easy to show that the expectation of Fy is the cdf Fy

(FN> = FN(Q]» yUNY P "\@I\/;J’L(])a”'aﬁ([\])qt) (35)

of the variables v(z(¥, 1), ®(z(¥,t) at the N points in the flow field. The necessary tools for
the derivation of the transport equations are the spatial and temporal derivatives of the step
function Fy. Implicit differentiation leads to

aFN _ ava (,) aFN 9% (1) aFN 3.6
= - Z{ Dger * &5 (3.6)

and A . .
OFy _ _Ovs .y yOFy _ 92 oy (3.7)

oz aI(J) o, oz Op;

where the summation convention applies to Greek subscripts.
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Pressure.
The pressure p(z,t) can be eliminated from the momentum balance according to

Ol’a d 3
TP = e, 0ra
with boundary conditions
9p
= h (v
B (v)
on 90N. The solution of this Poisson equation for p(r,t) can be given in the form
01 81 3
t =-I dyG(r,y) =2 —2 + B(z,t) (3.8)
p(z,t) / yG(z, 0 By

where G(z,y) = [z — y|~ ! is the Poisson kernel and B(z,t) is a harmonic function ensuring
that the boundary conditions are satisfied. It follows from this solution that pressure depends
in functional form on velocity, it depends on time in autonomous form via velocity and it
depends on location & parametrically. Hence p(z,t) = p[u(.,t); z] and

. QI_):_ ) @(.,t):g;_] (3.9)

and the Frechet-derivative of pressure with respect to velocity is given by

é 1 0%°G(z,y)

()] = e (g,
(5Uo,(g_;_,t)p[£(’t)'£] 57 Bpady, LY

if no boundaries are present. This derivative represents the change of pressure at r due to a
change of the velocity component v, at y.

Transport equation for I‘:" N-
The transport equation for Fy follows from the differentiation rules and the Navier-Stokes
system. We get

iy ) T Reladth i A :
o +;La(£ Dot g{m vl o er )
N s
OFNn OFy 3.10)
+Z{Q(@l) akp; a (,) —] av, } =0 (

This equation can be viewed as the condition that the value of the cdf Fy remains constant

for points in phase space (the product of flow domain, scalar space and velocity spaces) that
move with the velocity (vo(z®, ), TAD® + Q(®), v AWV v, — Ip/dza).
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Preliminary form of the transport equation for the cdf Fly.
Averaging of the transport equation for Fy leads at once to the equation for the cdf Fy. Its
preliminary form is given by

BFV al (,) aFN ) aF\ (1),, aﬁi\'
+Z 1) N0 +Z{F (A ea) + v(B g
Al oF d OF
=Y 3.11
+2 QUe50) — (ol il ) = 0 (311)

All expectations appearing in this equations need to be evaluated to provide expressions
containing the cdf Fy. If & < N the term is called closed otherwise it is nonclosed and
represents an additional unknown.

Flux in physical space. _
Mass balance holds at every point ¥ and this implies

OFy, 0
axf,i)> - axg)(

The flux is now according to the definition of the angular brackets given by

(va(z, 1) va(z" ) En)

(l’a(ﬁ(i)s t)FN) =

/dq’(!_“))"'/dﬁ(g‘m)va(g(”)FNfN(y(z‘”),---,Q(z“v));z“’,---.z‘N’.f)

The definition of Fy implies

(valz t)Fy) = fd@1-~- / du™Nol fy(pt, o @i z® e 2Nt
The relation
f *NFy
N Jvl---9eN

leads to

and partial integration results in

(valzD ) FN) = vl Fy — /dv;FN (3.12)

— Qo0
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which is closed. It can be shown easily that it is consistent with the corresponding expression
in the pdf equation.

Diffusive flux in scalar space. X
The flux in scalar space is given by (A¥@Fy) which is by definition

(ADSFy) = /d@‘ / / A P)

AVSIIN H(p; — @) H(W — o) fv (@ ), AV, ¢)

Introducing the conditional pdf f. defined by

Fuer(@ oY AR = f (AR V) fa(dY )

leads to
. 2 NNVNFvy
i i Ny __ -7 =V
(ADSEN) = /d(I)l / NinWe|e(zV) =o', oz tMy=y )acbl---(?y_N

as final result. A new unknown (A("®|.-.) appears and the flux in scalar space is. therefore,
nonclosed. Consistency with the pdf equation follows at once from the equation above by
differentiation. It is important to notice the fundamental difference between the cases .V =1
and N > 1. The term actually appearing in the transport equation for the cdf is

s,

WeF
a%<A v)

which is for N = 1 obviously a differential term

) a T OF
- (1) L —_ H (9 i 1
a%(A OF) = 3o, d®' (A P|Pe(Y) =@ )04)'
given by (see Pope, 1991)

9 OF § 1 AW (1) 23

3o, (AWMSF)) = (A'VP|P(x >3<,9

whereas for N > 1 the integral character is preserved since the single derivative removes only
one of the integrals.

Viscous flux in velocity space.
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The viscous flux in velocity space is completely analogue to the diffusive flux in scalar space.
It follows from (13) that

04 N FAV
B - O

(3.14)

—_0

i
<A(i)vaﬁ“\,>: / de! .. / A, O(z (1)):@l"__’g(ﬁ(.V)):_,,\»
-0
holds. The flux is nonclosed and consistent with the pdf equation.
Source flux in scalar space.

The source term Q(®,v) is assumed to be a local function of the scalar &z, t) and the
velocty v(z'".¢) It follows from (3.13) that

1 ¥

- N f i 64NFV
(QFN)z /d@l-../dg‘VQ(q) )W

holds. This expression can be simplified if the source term @ depends only on ! and ¢!
because partial integration removes the differentiation with respect to all the other variables

and we get
8"FV -
! ’ 3.1
QFN /d@ /(ll QP (9<I> 3000 (3.195)

which is a closed term. For the special case that the source Q depends on &' only we obtain
for the derivative appearing in the cdf equation

0 - OF,
=—(QFN) = Q(»’.‘)a—v:}

Consistency with the pdf equation becomes evident by differentiation of (3.15).
Pressure flux in velocity space.

It follows from the functional dependence of p on the velocity v that the pressure gradient is
a nonlocal function of v. Hence we can apply (3.13) and get

N

#1 r
55) a HNFy
<a;<),>Fw> /dcpl.../dz (axf,)l‘l’(r“)) ol o(e™) = oY) gErw (310

-0 -0

This result is nonclosed.

Cdf equation in terms of conditional fluxes.




The expressions (3.12) to (3.16) can be used to obtain a new version of the transport equation

for the cdf Fy |
N v

8FN iaFN F ,aFN'
ot +;{L‘00Ig)—/dlnaxs;)}+

— X

N
1]

o HNF
N l W=f! .. y——
E {Fa ) /d@l /d_l_‘ (LD (V) = @', >8'3I>1-'-(9_Q‘V

=1

0 1 NyA (D) (1)y _ &1 84VF\
rvger [t [ @ atle) = 8t ) )
N Pi ”i
. 0 ; K 54FV
5 1 1 oV 81) " . 64NFN
—_—— .. — ey 1 = 3.17
g [ 4@t [ @ TS = e gl =0 @D

This version is not suitable for the limit .V — oo since it contains the .V-dimensional Lebesgue
measure for which no limit exists. However, the transport equation (3,17) has several note-
worthy properties. First we note the special case of a single scalar in homogeneous turbulence
with Q(®). It follows that the cdf for the single scalar satisfies

%—F{F(A(bl@ @) + Qe }—-— = (3.18)
which is non-integral with respect to the scalar value p. The hyperbolic equation (3.18)
expresses the fact that the value of the cdf remains constant for points moving with the
velocity T{A®|® = ¢) + Q(p). We conclude that the structure of the cdf equation for .V =1
and N > 1 is fundamentally different and methods developed for N = 1 cannot be expected
to carry over to N > 1 without major modifications.

Pdf equation in terms of conditional fluxes.
The transport equation for the cdf can be used to obtain the equation for the pdf fv by

differentiation according to
f _ a“‘VFAV
N ol 00N

It follows that the pdf is governed by

Ofn g O
ot = “ary

=1

+
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N

Z{Fa%[(A“)@l@(z“’) = @) f] v (A () = @) )

i=1 1 (910

O ey gl . _
+;{ap, Lohfal - avz [(ara»)l‘i’(i )=, )fn]} =0 (3.19)

which is formally of local (non-integral) character in scalar-velocity space. It reduces for a
single scalar in homogeneous turbulence to the well known equation

L+ (maele = o) + Qo) =0 13.20)
which can be regarded as the condition that the divergence of a flux in the phase space
spanned by time and the scalar space is zero. Equation (3.20) and its generalisation to higher
dimensions (3.19) can be regarded as balance equations for the "mass” per unit "volume”
fn. The coefficients of fx can be interpreted as velocity components and fy will remain
nonnegative and its integral unity.

4.0 Mapping method for the one-dimensional case.

The mapping method suggested by Chen et al. (1989) has two distinct advantages over the
previously constructed models. It produces the Gaussian pdf as asymptotic limit for decaying
turbulence and agrees very well with DNS results for pure mixing in homogeneous turbulence.
The derivation of the mapping equation will be reviewed and its variant for the characteristic
function will be discussed.



4.1 The Chen-Kraichnan method.

The starting point for the Chen-Kraichnan method is the pdf equation for a single scalar
®(z,t) given by

of
9t + (va)

of

d _i(
0o ,

axa((vélq’(.{,t) =v)f) % (TA®I® = p)f)  (4.1)

0
+ a(Qf )=
which reduces for homogeneous turbulence to

af 9 .
L2 = 4.2
; + 6¢{F,,f} 0 (4.2)

The equation for the corresponding cdf is according to ch.3.

oF oF
— —_— 4.3
vl F, % 0 (4.3)
The velocity in scalar space is defined by
F,=Q+ (TA®|®(z,t) =) (4.4)

It governs the dynamics of pdf and cdf. The probabilistic argument space of pdf and cdf
is the range of values the scalar & can assume at any point (z,t). Let this space be the
unit interval [0,1]. There are two slightly different ways for the development of a mapping
method.

Method I.: A mapping X : R! — [0,1] is defined by two conditions. First, the value of
the cdf at the image variable X(7) is equal to the value of the standard Gaussian cdf at the
argument variable n

F(X(n,z,t)) = Fa(n) (4.3)

and second, the mapping is monotonically increasing

X(m) <X(m2) for m <m (4.6)

Mapping the domain of definition of the single point cdf implies that the value of the scalar
®(z,t) is the image of a variable ranging on (—00,00). Hence will the mapping in general
depend on the location in the flow field and on time. The first condition (4.5) implies the
existence of a Gaussian random variable ¥ such that

Fg(n) = Prob{¥ < n}

holds. The argument variable is now extended to a Gaussian random field such that the
Gaussian random variable is the Gaussian field at a location ( = Y(z,t). Note that this
extension is completely arbitrary and the mapping X does not determine the relation between
the locations of the image variable ®(z,t) and the argument variable ¥(¢). The second
condition (4.6) is a direct consequence of the monotonicity of the cdfs.
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The probabilistic interpretation of the first condition (4.3) using
F(X(n,z.t)) = Prob{®(z.t) < X(n.z,t)}

and

Fg(n) = Prob{¥(¢) < n}

is given by
Prob{®(z,t) < X(n,z,t)} = Prob{¥(¢) < n}

which can be regarded as
Prob{®(z,t) < ¢} = Prob{X(¥(¢).z,t) < #} (+.7)

It should be noted that the mapping thus constructed is local in the sense that any change
of the Gaussian argument field ¥(¢) at any location ¢ # Y (z,t) has no influence on the
mapping. We note that there are three fields involved in this version of the mapping method:
1) The turbulent field ®(z, ).
2) The Gaussian argument field ¥(().

3) The (local) image field $(z,t) = X(¥((),z,t) where ( = Y(z,t) holds. The image
field is called surrogate field (Pope, 1991). -
It follows from the fact that the mapping relates only single point statistics to Gaussian
statistics that no scale information will be determined by this version of the mapping method.
The mapping Y relating the locations of turbulent and argument fields is so far undetermined.
The mapping equation is now derived from the first condition (4.5) by differentiating
with respect to time. It follows that
9 [ 2XE (48)
ot at Oy
must hold since the reference distribution is time independent. Comparison with (4.3) and

(4.4) leads to

S =@+ (ra%ieE) =) (4.9)

The closure model is completed by requiring that the conditional expectation of the turbulent
field is equal to the conditional expectation of the image of the Gaussian reference field

(surrogate field)
o0X

= =Qe) + (TAd|®(z,t) = ») (4.10)
The most important property of this mapping equation is the fact that the Gaussian
reference measure allows explicit calculation of the conditional expectations in terms of the
mapping and correlations of the Gaussian reference field. The derivatives of the image field
can be expressed in terms of the reference field as follows
0% 9
0T o " Oz,

X((X(z,t).t)
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and thus )
0% 90X 9V oY
6Ia - 899 GCJ a-ra
holds. If the so far undetermined relation between the locations in physical and reference
spaces Y is restricted to a stretching transformation uniform in physical space we get

(4.11)

=4 (t 4.12
ara aﬂm( ) ( )
where m is time dependent. Denoting the derivatives of the mapping with
X 90X -
X'=—, —=X 1.13
dp Ot ( )

we get

02 _ /0¥ oY,

= . n (4.14)
and for the Laplacian
P oV oV 0w
% X' 4.15
al‘aal‘a (X aCa aCa * . 3Ca5Ca) ( )

The conditional expectation of the Laplacain can be established explicitly in terms of the
mapping X and correlations of the Gaussian reference field if and only if the derivatives
of the mapping are completely specified by the condition ®(z) = ¢. This implies that the
mapping must be local, i.e. the variation of the reference field at locations s" # ¢ has no
influence on X(¥(().t). It follows then from ¥(() = n being the unique inverse image of

&(z,t) = ¢ that

0’ s _af yn O O¥ . O _ ) s
(5o = o) = m? (XM SR W0 =) + XU O =) ) (410)

holds. The correlations of the Gaussian reference maesure can be evaluated as follows

ov o¥ ov 9v
— () =n) = (=—— 4.16

and <8\I! 22
0%y RO - o794 417
<6CaaCa |‘I,(&) - 77) =-n (q’g) ( { )

The variance (¥2) of the reference measure can be set to unity without restricting the gen-
erality of the result. This completes the closure of the mapping equation. The resulting
equation determining the mapping is thus given by

a¥ ov v
=Q(n) + (3ca aca
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This result was first obtained by Chen et al. (1989) and generalized by Pope (1991) to

several variables using the fact that the V-variate pdf can be represented as the product of
N conditional pdfs.

Method II.: A general transformation of the domain of definition of the pdf equation
(4.2) is considered. The domain of definition is the space S = R x [0, T] which is the image
space of the mapping X : R! x [0,T] — S (T denotes the time interval considered and R is
the range of the values of ®). The mapping is then written as

t=Xun. 1), ¢=Xo(n, 1) (4.18)
The mapping must possess a unique inverse satisfying the same smoothness conditions as X'
=X g t), n=Xg'(p1) (4.19)

and it must have a positive Jacobian. The mapping equations are established in two steps:
First the pdf equation in the reference domain is set up and then the mapping condition that
this pdf is Gaussian is introduced. The function f7 defined by

ffn, 1) = f(Xe(n, 1), Xe(n, 7)) (4.20)

is the pdf in the reference variables, but it is not pdf with respect to n since it it is not
necessarily normalized. The transport equation for f? requires the transformation of the
derivatives in (4.2) given by

ox;' o  ox[!

2 LoX o
ot ot On ot or

9 _ BX(;I_B_ ax,-lg
8o Oy On dp Or

The inverse transformation can be expressed in terms of the mapping itself (see Courant
(1968), vol.Il, ch.III, sect.4) and we obtain

9 _ _1_(_8)(4, 9 _0% ﬂ) (4.21)
at J\ Or On On Or
and
o _1 _QX_tﬂ+aﬁ£ﬁ> (4.22)
op J dr On  Op OT
where J denotes the Jacobian defined by
7= 0Xe 0X, 0Xs0X, (4.23)

or on  On Or
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The pdf equation in the reference variables follows now in the form

0Xe OfT  0X4 OfT {ax, AT
or On on Or On Or or

%}(Fng)z() (4.24)

where F;F = F(Xe(n,7),Xi«n,7)). The mapping X¢, X, is now in part fixed by the require-
ment that the pdf with respect to the reference variables is Gaussian

agq’fT(mT) = fa(n) (4.25)
n
or with (4.20)
flp,t) = f;;i-z)
on

where ¢ = X¢(n, ) holds. The derivatives of fT can be expressed in terms of fg and we

obtain ofT fo 0Xe PXe
o () [n an o ] 420
on
and . )
af — _ fG 2*Xe (4.27)
or (6_;«"712 onor

It follows that the Gaussian cancels out of the pdf equation which can be recast as

(_ 0Xs _ ?Xe O0Xs O ) (8.«’(¢ _FTB_Xi)+8X¢ 0 ( T%) FT% 0?Xs

7 on n? + dn On or ¥ or an Or\ ¥ dn ) "¢ On onor :8)
(4.2
If we set (compare to (4.10))
G‘YQ _ Ta‘Yt (4 .)9)
B e o
it then follows from the pdf equation that
3’ Xq
9 FT% =FT% ondr (4.30)
or\' ¥ On ¥ On -‘%—)’-

must also be satisfied. There are now two distinct possibilities for the mapping: We can
restrict the temporal map to X,(n,7) = X(r) which then implies that 8X,/0n = 0 and the
second mapping equation (4.30) is trivially satisfied. Hence, the condition that the reference
measure is Gaussian does not determine the scale factor X,/d7. In the second case where
the dependence of X, on 7 is retained we find that the second mapping equation (4.30)
determines the temporal evolution of X, but not the variation with respect to n which is set
arbitrarily by the initial condition.
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4.2 Mapping method for the characteristic function.

The characteristic function corresponding to the pdf f(,¢) is defined as the Fourier transform

1
vVar

If we regard the pdf as the image of a Gaussian via p = X(n,t) we can transform the integral
and obtain

m(Cyzt) = /dsof(p.g,t)exp(w@‘) (431)

m(Cat) = <= [ i fX Otz ) expliCX ()
It follows from the properties of the mapping X(7n) that

1
Va2

holds. If we introduce the characteristic function of the Gaussian mq(¢) we find that the
characteristic functions are related by

m(¢,z,t) =

/ dn f(n) exp(iCX (n)) (4.32)

m(C.z,t) = \/—12=7r / dn / dome(w) expli(CX (n) — wn)} (4.33)

and we can regard
. 1 e
Y(Cwnt) = ﬁ/dnexp{zmm,t) ) (4.34)

as mapping function. It is straightforward to derive the transport equation for Y from (4.34)
and the equation for X given by (4.10)

6}"(C’w,t) 0 (WY )+

=mi(VY¥ . VI {-?Y({,w)+ W

/ dr / dEREY (¢, R)Y (¢, E)Y(=Cow — & — E)} +iC / Ok —)Y(Cor)  (435)

where Q is the Fourier transform of the source term Q. This equation is apparently nonlinear
and its usefulness depends essentially of the way the limit of zero fluctuations is approached. It
follows from the definition of Y (4.34) that the Gaussian characteristic function is approached
if the mapping Y approaches the Dirac-function

Y(¢w,t) > 6(¢ —w) as X(n) =7

This property eliminates Y from consideration since it leads back to the awkward propert;ies
of the time inverse diffusion equation whose solution must reduce the width of the solution
profile as time evolves. However, a simple modification of the definition of the mapping

—

Z(¢mt) = exp(i¢(X(n,t) — ) (4.36)
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leads to the limit

Z(¢,n,t) — L as t — o0

Var’

and the corresponding transport equation appears in the form

2
) —inCZ — n% (4.37)

— =iQ(n)(Z + m*T{ o

oy 0y 2’2 _ 1 (Qg
9a 0Ca” On*  W(Z\ 0y

We note the absence of integral terms but the presence of nonlinear terms. The characteristic
function can be recovered from

m(Cat) = / doma(w) / dnZ(C.mi . ) exp(i(C — w)n) (4.38)

In conclusion we note that there is considerable freedom in setting up a mapping procedure.
The usefulness depends on two aspects: The approach of zero fluctuations and the number
of independent variables, which becomes critical if more than a single probabilistic variable
in the pdf is considered.

5.0 Mapping method for the multi-dimensional pdfs.

The extension of mapping methods to multi-dimensional pdfs requires some preparations.
We begin with a fundamental property of the pdf equation and its consequence for mapping
methods. The pdf equation is regarded as a first order pde and a slight modification of the
characteristic theory of this class of equations (see Courant and Hilbert, vol.II (1962), ch.IT)
leads to the basic result. It will be shown that it is not necessary to resort to the cdf equation
(as done by Pope, 1991) for the development of mapping methods.



5.1 Fundamental mapping equations.

Suppose the pdf far(wy, -, 0p,t) = Prob{p; < &, < p; +dp;,i = 1(1)M} depends on M
probabilistic variables, i.e. fjs integrates to unity with respect to vy, -+, as. and time. The
transport equation for fas is then given by

M

0
f“+za (R®, = o1, ) fu] = 0 (5.1)

where the fluxes R; are subject to the conditions that random variables ®; assume the values
@i for i = 1(1)M. The particular structure of the conditional expectations (R;|---) is not
important for the following assertion. Consider now a local mapping X : RM — RM where
RM denotes the range of the variables ®; for i = 1(1)M,

wi=Xim, ,numt), 1 =11)M

such that the Jacobian J defined by

X, -
J= det(a )>o (52)
On;
remains positive. Let fg(71, - -,nm) be M-variate Gaussian and let

fG(.Tha"'snM) (53)
J(nlv"'»nM9t)

f}\‘l(‘Yl(nlv'"7nM’t)7"'7‘Y;’\/I(nls"'qust)wt) =

be the pdf defined by fg and the Jacobian .J. We will prove that fj; satisfies the transport

equation
Of i - |
(%), S ()0 o

where ‘Pz‘=X.'(’71,"‘J]Mat)- . L.
Proof: The time rate of change of f}; for n kept constant follows at once from implicit

differentiation
() - (490, £ 58,5,

where ¢; = Xi(n1,---,n:m,t) was used. Differentiation of the right hand side of (5.3) leads to

7(5) = %(5)
ot q— Jt\aot ),

fa _ . (198J
(7),: - M(m‘)
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Using (5.3) we get
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The time rate of change of the Jacobian is given as a sum of determinants by

a7 M | m an am
b ., |
k=1l ox, . 2N ... Xy
LY onar an
where the notation 5
. Ad
_X,' = (-—at'>
a
was used for the time derivative. Consider now a differentiable function F(X,, -, Xy)
where the arguments are functions X;(n;,---,na,t) and set up
M
On: £t Xy On:

Cramer’s rule leads to an expression for the derivatives with respect to the X;

ax, ... OF X

om om om
7 oF } .
X, . . )
82X, ... BF .. 32Xy
oOnm Onar Inm

where the derivatives of F appear in the ith column. Setting F = X, and summing over
¢ = 1(1)M produces

M g M on i M
N N -
(v X, . ) )
=1 k=11 oy, . aXy ... 9Xm

onm M onm

which is identical with the time rate of change of the Jacobian. It follows that
(32 - 0%,
J ot n o1 0X;
holds. Combining the results for the left and the right hand sides and using

i = Xim, - nmt)
leads to the conclusion that f},, as defined by (5.3), satisfies
M

O\ | <= Ofis . 0Xi
( oy ):; e .X.+ZfMa%_ =
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or

(an> Za (% f”>
as claimed.

Note that the particular properties of the Gaussian reference measure did not enter the
proof, only its time independence was used. It follows that any other time independent
reference measures such as the measure with beta-function density, suitable for bounded
scalars, could be used. Comparison of (5.4) with (5.1) shows that this result allows the set
up of the mapping equations for any number of variables. It follows that fas = f3; holds if

= = (Ri|®, = p1,--), 1 =11)M (

(&1}
(1}

and the initial and boundary conditions for (5.1) and (5.4) are the same. The relations
(5.5) are the central result for mapping methods. It is instructive to compare (5.5) with the
dynamic equations for the scalars ®;(z,t). The scalars are governed by

%(Lt) = Ri(z, @1(z,). -, Pmlz, 1), 1)

for : = 1(1)M and the right hand sides R; do not depend on the parameters @y, .9 M.
Note that the dynamic equations may be taken at different points in the flow field and the
location vectors r are then labelled accordingly. The mapping equations (5.5) contain the
conditional expectation of the same right hand sides R; but the expectations depend on the
conditioning parameters ¢, --,@a. The dependence on the location is now parametric if
all scalars are taken at the same point.

The generalisation of (5.3) to time dependent reference measures

fa(mi, s nust) = g0
* 4Y yo , 7‘X’ yt ,t,t = (03)
Fa(Xa(m M, t), - m(m - t):t) J(m, - nm,t)

leads to a modified equation for f3,. The dependence of the reference measure on time is
established for the case of a non-degenerate M-variate Gaussian given by

M M
fyv(m, - nmit) = {(QW)Mdet(AIij)}_’} exp{—% Z Z(m - ﬂi(t))M,;l(Uj — p;(4))}

=1 =1

in terms of the time dependence of its mean value vector y(t) and covariance matrix M;;(t).
The equation for the pdf defined by (5.3') can be shown to be

<6fM) Za (G )= a5l | (5.4)
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The derivative for the logarithm of the reference density fg can be established if the particular
form of fg is known. It follows for the Gaussian that

dlog(fc) _ <~ dlog(fa) au, dlog( fc) 6\[-1
ot B .Z Ot Z Z 0\1_

holds. It follows from the pdf equation (5.1) that a time dependent reference measure is

inappropriate if the right hand side of the pdf equation is zero.

The properties of the flux equations (5.5) depend essentially on the formulation of the
basic laws. Their particular structure will be analyzed in the following sections for the spatial
and material frames. The case of two-point pdfs will then receive special attention to illustrate
the properties of mapping methods that are able to produce scale information.

5.2 Mapping method in the spatial frame.

The evaluation of the conditional expectations requires now the knowledge of the the partic-
ular properties of the fluxes R;. The random variables ®; are now regarded as the the values
of stochastic fields at one or more than one points /) in the flow field D. At each point
2" i = 1(1)N in D a set of K variables ®;,j = 1(1)K consisting of velocity, scalars and
other variables is taken as the probabilistic variables in the pdf. The notation 1s modified
@_(i') = ®;(z(",¢) to indicate the location in the flow field. Accordingly are the fluxes and the

components of the mapping denoted by R;'), X(') The fluxes R( ) can be split into a local
and integral contribution

0%

3 0%, _
' 0o’

R = el T o

a

) (5.6)

where the lack of a superscript in the integral contribution indicates that it depends on any

location in the flow field. It should be noted that the presence of spatial derivatives in the R('
required the extension to stochastic fields. Examples for the local and integral contnbutxons
can be found by inspection of the basic laws (3.1) to (3.3) and (3.8). It is easy to see that

(i) ’®;
i VT4
Org 0T

1s local and

@ _ 1 a ) Ovg Ovg
JVJ» = ir /(lyax(')G( ,y)ayﬂ aya
D

is integral and, therefore, nonlocal. The Gaussian random variables representing the argu—
ments of the mapping are also regarded as the values of stochastic fileds at N locations C

i = 1(1)N in the domain of definition R® of the fields ¥, j = 1(1)K. The argument ﬁelds
¥;(¢), j = (1)K are homogeneous Gaussian fields with time independent statistical prop-
erties. The extension of the random variables to stochastic fields taken at .V points in the
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respective domains of definition implies that there must be a relation of these N points in
R? for the Gaussian argument fields to the corresponding .V points in the flow domain D for
the image fields. This mapping Y : [D]V — [R3] is denoted by

gm=L(i)(£(’)."'~£(‘v)-f) (3.7)

It is time dependent and was defined as pure stretching in the case of single point pdfs (see
(4.12)). It is important to notice that ¥~ is not determined at this point and the subsequent

development will show that ¥ may depend on the mapping X;”.

The fundamental requirement of mapping methods is now that the conditional expec-
tations of the turbulent fields @;')(g(i),t) is equal to the expectations of the images of the
Gaussian argument fields \Il,-(gm), i = 1(1)K, j = 1{1)N. If we denote the fluxes taken at

the image fields with R;i)

- (i ; (N 1 N =
R;t) = R,(]')(‘Y§1)( (11)" : ')1' v 7‘\£\' )(\I,(l )" ' ')vg(l)»' " ,_I_( ),t) (08)
and
3 = X0, 2™ ), NN 2N ) 2
(5.9)

for : = 1(1)V, j = 1(1)K, we can write the mapping closure as
[ (1 1) =
(B0 = i) = (R =) (5.10)

where the fact that the mapping has a positive Jacobian was used to express the conditions
on the image variables in terms of the argument variables. The equations

ax .
5 g 2@ e gy = (RO = i), = U, = 1DY
(5.11)

(with appropriate change of notation compared to (5.5)) are called flux equations. Introducing
the the representation (5.6) for the fluxes leads to
(3}
8Xj
ot

ot
[y
(V]

= (LM =)+ (Ve =) (3.1:

The presence of nonlocal contributions N](-') needs some attention, because they contain the

values of the turbulent fields at locations y # z!* for all i = 1(1)N, where they are not
image of a Gaussian argument field since the mapping (being local i.e. only defined for the
z(® 7 = 1(1)N) is not defined. Extending the mapping to nonlocal (or functional) character
does not make sense since no tractable mapping equation would emerge. The only avenue
open on the level of V-point pdfs is the construction of an additional closure for the nonlocal
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terms (such a closure was outlined by Chen et al. (1989)). This aspect of mapping methods
will not be discussed in the present chapter.
It is important to notice that the pdf f}, defined by (5.3) is not solution of the pdf

transport equation (3.19) for ¥ > 1 or non-homogeneous turbulence if the mapping X}“)
is only applied to the probabilistic variables @;i). This is a consequence of the fact that

the locations £ in the spatial frame are parameters and not probabilistic variables since
there is no transport equation governing them. However, it is clear from the structure of
the convective term in (3.19) that the notion of the mapping can be extended to include
Z: [R®*)N — [D]V which is determined by

8z | '
—L = X g 2 2V (5.13)

for j =1,2,3 and i = 1(1).V, where the supscripts of XJ(»” are arranged such that j = 1,2,3
correpond to the velocity vector. The closure is completed by requiring that Z is the inverse
map of Y introduced in (5.7)
-1
() _ [0 -
29 = (yj ) (5.14)

It is now apparent that we must require that Y : [D]N¥ — [R®]" has a unique inverse. It

follows then that the mapping ¥ for the domains of definition is in general a function of the
same set of independent varaiables as the mapping X of the range of values.

5.3 Mapping method in the material frame.

The basic laws in the material frame can be given in mixed (spatial-material) notation as
follows

as kinematic condition and

AL =0 (3.16)

0X,
av, 1 8P 0%V, -
& _ __ o 5.17)

3 ~  »0X.  BX,0X, (
2

o0d o°® (5.18)

7 -+ I555%;

where X(a,t), V(a,t), P(a,t) and ®(a,t) denote now position, velocity, pressure and scalar
in the material frame as function of the label variable ¢ = X(a,0) and time t. The time
derivative is now the substantial derivative with the label a kept fixed. It was shown in
section 1.1 that the implicit derivatives with respect to the actual location can be expressed
in terms of derivatives with respect to the independent variable g, but the resulting expressions

are highly nonlinear and will be invoked only if necessary. The set of dependent variables
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consists now of position X, velocity ¥V and scalar & and the mapping equations developed in
section 5.1 can be applied without modifications. It is worth noting that the minimal set of
dependent variables appearing in the spatial frame (section 5.2) requires an extension of the
mapping and results in the same set of variables for the mapping as in the material frame. The
components of the mapping XJ(»') (not to be confused with location X in the material frame)

are ordered such that XJ(') corresponds to location for j = 1,2,3, to velocity for j = 4.5.6
and to the scalar for j = 7 and the superscript indicates the material point ¢’ € D(0). The
flow domain D(t) is a function of time and represents the range of the dependent variable
position X whereas D(0) is the domain of definition of all dependent variables X, " and &.

The random variables ®; appearing in the pdf equation (5.1) are now regarded as the
the values of stochastic fields at one or more than one labels ¢!/ € D(0). At each label
a® i =1(1)N in D(0) a set of K variables ®;,; = 1(1)K consisting of position X, velocity
V and the scalar ® is taken as the set of probabilistic variables in the pdf. The notation 1s
modified as in section 5.2 to @;') = ®;(a'",t) to indicate the location in the initial flow field.

The fluxes and the components of the mapping are denoted by R;i), XJ(-“ as before. The

fluxes R;i) can be split into a local and integral contribution

; gl 0BF i oe 5
R = L@ )+ N (B ) (5.19)

where the lack of a superscript in the integral contribution indicates that it depends on any
location in the flow field (mixed spatial-material notation is used for the fluxes). The Gaussian
random variables representing the arguments of the mapping are also regarded as the values
of stochastic fields at time ¢ and at N labels ¢/, i = 1(1)N in the domain of definition R}
of the fields ¥}, j = 1(1)K. The argument fields ¥;((,t), j = 1(1)K are homogeneous and
stationary Gaussian fields. The mapping ¥~ introduced in the spatial frame by (35.7) appears

naturally in the material frame. Recalling that the mapping XJ(-” represents for j = 1.2.3
the position of the material point (2)

X(a™,t) = XV, e g @, e
we note that at time ¢t =0

X,('i)(‘l’(ll)»“ LU g L V) 0y = ag‘) (5.20)

must hold. The condition of a positive Jacobian for the mapping XJ(') implies that there
exists a unique inverse which is for j = 1,2,3 the Gaussian distributed argument position

field at Q‘”
i Ve _ N
‘Ili(g.( )) — {X;z)} 1(89(11)*""*’(}\' );Q(l),'--,g(N),t)
(7 =1,2,3). For t =0 we set

ot
RV
[a—
—_

NG )y —1, (1) (N N d.
Q(')={‘Y;l)} 1(&,‘91 "_’th_);g(l)’,_,’g-( )’0) (5.
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and (5.20) implies that {‘Y](-i)}’l(- -+,0) depends only on the label a'¥. Hence, we have found
a mapping

Q;l) })(l)( 1)) (.

1]
[RV]
[E%]

defined by
Y@ = (X o e , a'™,0) (5.23)

which is independent of time. In summary we note that all argument fields are stationary and
homogeneous Gaussian fields. The deterministic conditions (5.20) and (5.21) at time zero are

enforced as initial conditions for the mapping X ) which approaches appropriate constants
for t — 0, thus producing marginal Dirac pdfs for position. There is no need to introduce
time dependent reference measures.

The fundamental requirement of mapping methods is now that the conditional expec-

tations of the turbulent fields @5"(9_("),” is equal to the expectations of the images of the
Gaussian argument fields \Ili(_(_(j)), i = (1)K, j = 1(1)N. If we denote the fluxes taken at

the image (surrogate) fields with R;i)
R_(yl) = Rgl)(‘Yil)(\I’(ll)a o ')v e Q‘Y;\N)(‘Il(ll)a ot ')’g_(l)» Tt ’g(N)»t) (524)

and

) = x(P(@(x D@D, BN (@) gt d™ity (3.25)

for : = 1(1)NV, j = (1)K, we can write the mapping closure as
(R(z)ltp(l) (l),“_) _ (R‘(ii)l\ll(ll)znil)’_”) (5.26)

where the fact that the mapping has a positive Jacobian was used to express the conditions
on the image variables in terms of the argument variables. The equations

8X(') N ~ (1 1 . » - ]
(g @ g™ = (BP9 =), G = DK, = 1N
(5.27)
are called flux equations as in section 5.2. Introducing the the representation (5.6) for the
fluxes leads to

0X(‘i) 5 (i (i 1 = ¢
=L = (B =gl )+ O =) (5.28)

The presence of nonlocal contributions N presents the same difficulty as in the spatial
frame since they contain the values of the turbulent fields at labels a # gV foral 17 = 1(1).V.



5.4 Mapping method for two-point pdfs.

The mapping methods developed in the previous sections will be applied to a special case of
particular importance. We consider the pdf taken at two points in homogeneous turbulence
and restrict attention to position and velocity desribed in the material frame. The pdf
equation (3.19) appears now in the form

dp

'a—ﬁl‘l’(im) =&, )f} =0
T o

Of2 =i 0f 0 :
i} o e . (1), My — ! ...y —
= +Zbaar(i) +Z o LA @21 = @)
i=1 o i=1 o 3

(5.29)

where the subscript indicates that two points are considered. Homogeneity in physical space
implies that f, depends on r = z(*) — £(*) but not on z = (z® + z(1) and it follows that

the pdf equation is reduced to

0fr 2 1,0f ~~_0 (i) My — @l P 1e(r D) = LMY =
— +(vi-v —r:+; 303{[<VA ve|®(2'V) = &', -) <6:r£,i)|q)(£ y=&,--)f2} =0

(3.30)
The pdf f, depends on relative position r, velocity at two points v 4 = 1,2 and time t.
The image space S of the mapping XJ(” is, therefore, spanned by the range of these vatrial.)les.
Since no boundaries are present for homogeneous flows it follows that the image space is given
by S = R®. The argument variables are all Gaussian random variables and this implies that
the domain of definition of the mapping X;” is also given by R®. Hence, XJ(’) : R® —» R°.
We denote the mapping of the relative position with Z : R® — R?® and the mapping onto the
velocity space with XV : R® — R3, i = 1,2. The image variables are now regarded as values
of stochastic fields at two labels a*, i = 1,2.

o _ [ Xi(@?P.t) - X;(aV. ) = AX;(a.a® 1)
5TV, i=1,2

(ST

and likewise for the argument variables

o' = T(¢P, 1) - ;¢ 0 = AT (¢ (P
R R Z(4UNYE i=1,2

The mappings relate the argument and image variables
AX(aM,a®,t) = Z(AL, ¥V, 170, a®,) (5.31)
and
V(a®,t) = XA, 2V, 8P:a™,a?1) (5.32)

where the label g in physical space and the domain of definition of the argument fields are
related by the time independent mapping Y. given by (5.22). The flux equations follow at
once from section 3.3 in the form
0Z; _ v _ v _ 33
sz‘xj -X;7, J=123 (5.33)
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and ‘
ax!
—d

(@1}

= (Q”IA‘P: =m1,0) F <‘VJ('”'A‘I’1 =nm,), 1=12 (5.34)

The implicit form of the local and nonlocal parts of the conditional fluxes follow from (5.17)
as

2 (1) 62.1{'((;) o
(LAY, =gy,--) = <”W'M‘ = 1, (5.35)

and 1 0
(NOAY =y, ) = = PX( ), V(AT =7, ) (5.36)

p0Za
where the pressure is a functional of position and velocity according to (3.8) which can
be translated into the material frame without difficulty. However, position and velocity in
P[X(.,t),V(..1)] cannot be expressed in terms of any argument fields because the mapping
is defined for two labels only.

The evaluation of the local part of the flux equation is rather complicated and will be
outlined without explicit calculation of all expressions. Furthermore, it will be assumed that
the mappings do not depend parametrically on the labels a i = 1,2 and the dependence on
the labels is via the map Y only (the maps Z ans X ¥ are autonomous with respect to label).
The position field is dependent variable and the mapping is defined for two different labels.
This implies that the implicit derivatives with respect to actual position must be expressed
in terms of derivatives in terms of labels. The Laplacian is thus according to section 1.1 given
by

axy 1 02,02y 8 ,8Z.02,0X.
52,02, _ 2°%97*"“ 34, Ba, Das  Oas Da, Oas

(5.37)

The argument fields A¥ and ¥),; = 1,2 depend on the label g via the map ¥ (a) an~d
parametrically as indicated in (5.31) and (5.32). It is now more convenient to expand (5.37)
into

2xy 1 8Z;: 024 02.0Z4 8°XY’ b erse, 025026 0Z; axl a2z,
92302,  2°%97°*"“ 34, Da,, Das a, Dagdas « °7 " a, da, dag Oag 3(1.,(')0538)
(5.

Implicit differentiation leads to

0Z, 0Z,8%;0Y, 08Z, 0¥§" 9y, , 92 av'? oy,
Bag ~ Bps 0(y Bag  9plt) OC, Oag  g\P OCy Oag

(5.39)

where _Z_(f,cpm,cp(:'),t). The mappings Z and X were assumed to be local. This implies
that the derivatives 87, /Ops--- as well as Y, /0ags (since it is the inverse of Z at time
zero) are completely determined by the conditions A¥ = 7--- and the conditional expec-
tation applies to the derivatives of the Gaussian argument fields A% - -- only. The second
derivatives follow from repeated application of (5.39). The conditional expectation of the
Laplacian emerges as complicated combination of products of first and second derivatives of
the mappings Z and X'. The degree of nonlinearity is clearly given by the nonlinearity of
the momentum balance (1.5).

34



6.0 Conclusions.

Several conclusions can be drawn from the mapping methods discussed in the present paper.

1. Mapping methods applied to velocity pdfs require additional closure assumptions
since the pressure depends in functional (integral) form on velocity.

2. Random variables which are regarded as values of stochastic fields at particular
locations require an additional mapping for these locations in the domains of definition of
image (turbulent) and argument (Gaussian) fields.

3. The computational effort for the flux equations is approximately M-times the effort
for the pdf equation where M is the number of probabilistic variables of the pdf. Mapping
methods are, therefore, not competitive for M > 1.
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1.0 Introduction.

The prediction of compressible turbulent reacting flows requires careful consideration of all
possible formulations of the basic laws to produce a set of equations suitable for pdf methods.
The first step is, therefore, devoted to the study of possible formulations of the pdf method
for compressible turbulent flows with combustion reactions. This aspect of the research work
was carried out in a previous grant and is documented in the report by Farshchi et al. (1991).
The second step is the development of closure models for this type of flow with particular
emphasis on the effect of compressibility. The pdf method can be based on the transport
equation for the pdf of thermo-chemical scalars plus variables measuring the rate of relative
volume expansion or the material derivative of the pressure (see Farshchi et al., 1991). The
pdf approach offers the possibility of treating chemical non-equilibrium in rigorous fashion,
which is particularly important for high speed flows characterized by high shearing rates and
short residence times. The progress achieved in the development of a closure model for the
pdf equation valid in this situation and the successful application of this model to supersonic
hydrogen flames will be discussed in detail.

2.0 Pdf transport equation for compressible flows.

The single point pdf equation for scalar variables determining the local thermodynamic state
is considered. Turbulent flow at supersonic speed can be modified significantly by compress-
ibility and the interaction with shocks created outside the turbulent flow field and random
shocks (shocklets, Johnson et al., 1973) generated in supersonic turbulent shear layers. Pdf
methods can be adapted to cope with the effects of compressibility including random dis-
continuities and combustion. We consider the case of infinitely fast reactions, in which three
variables determine the local state: Mixture fraction, pressure and enthalpy or any other
equivalent set of thermodynamic variables. Pressure can vary significantly in supersonic
flows and enthalpy is not conserved due to frictional heating in high shear regions. Hence. no
further simplification, as in the case of low Mach number subsonic flames, is possible. The
single point pdf f; is then set up for the velocity v, density p, or a local function of density
such as log(p) which will be used below, internal energy u, relative rate of volume expanslon
D and mixture fraction £ (a choice that was found to be advatageous by Farshchi et al.. 1991)

o, dyu, ¢z, t) = (6(n — 2)6(p — d)d(e — u)é(D = ¢)8(€ — 7)) (1)
The transport equation for this pdf can be obtained using standard methods and emerges in
the form of of 5 5 L 3
1 1 P ; Tad ; F
_ ) —) = — — _ Bd o
d( g +vege )= 5o (G ) + ety 1) + Bdlfef))
9 . 0 v—1, | ) 1M02 AT a ;
+5‘(Z(d Qfl)—%{—' - duC fi + /(7—1)—1—2;(‘1’f) Pe<aa'0,f)}
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Mean thermodynamic properties follow from the pdf f; by integration using the local relation
determined by equilibrium considerations. The mean pressure for instance is given by

{p) :/dd/(lu/(lr]p(d. wop) frldoun)

where p(d, 1, 1) denotes the local relation of pressure to density, internal energy and mixture
fraction. The calculation of this type of local relation is straightforward. The relations for
other thermodynamic variables such as composition and temperature to the pdf variables
density, internal energy and mixture fraction were established using the equilibrium code

STANJAN (Reynolds, 1986).

2.2 Closure model for the pdf equation.

The pdf equation to be considered is the result of integration of (2) over velocity space. It 1s
given in terms of the density-weighted pdf f; defined by (Kollmann, 1990)

fi= %ﬂ_fl(¢l.--'-¢xzﬁ.f) (3)

where ¢ corresponds to the scalar variables (p, €. D,¢)and ! = 4. The integrated pdf transport
equation for the set of ! thermo-chemical variables follows from (2) for high Reynolds numbers
in the form ‘

ME

ofy L Oh B8 .. 0 1= oMo s
(p) '5}—4—&'35.-;—-:E(dgfl)}‘i"%{—(ﬂ)_c_v"“gfl + (5 l)RE (®f)}
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The terms on the right hand side can be shown to contain dominant terms describing turbulent
mixing in scalar space which has the well known structure of a time-inverse diffusion process

a.fl { l 02 . . f) |
a mi‘r:_zzm“elkl i=¥hi

fas 0 10

pOrq

)f) (4)

[}

a‘I’,‘a‘I/j i (6)

with equal diffusivities ['; = ['; = T for simplicity. Note that no such term acts in the first
scalar direction which corresponds to the variation of density.
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2.3 Mixing Model.

Any closure model for the mixing process described by (3) should share as many properties as
possible with the exact term. It should preserve normalisation and mean values and decrease
variances and covariances. The pdf should remain nonnegative and should not spread outside
the domain of realizable states. The pair interaction model for the / — 1 (note that one of the
scalars does not mix as it corresponds to the density, which does not diffuse) scalar variables

is defined by
0 , .
( fl) /@/ A AT " 2) = fil2)) (

It is assumed that all scalars are appropriately normalized such that the scalar space (set of
all realizable states) R is a subset of an { — 1-dimensional unit cube. It should be noted that R
may have intricate boundaries as a consequence of realizability conditions that mass fractions
cannot become negative or exceed unity and that they must add to unity. The transition pdf
T(p' 9", ¢) must satisfy the requirements

-1
—

T(f_,~y9’,-ﬁ)= T(ﬁ"ﬁ,"f_'+ﬁ"—?7) (8)

and
T(y”-ﬁ’la‘ — 0 for T: e ‘\'(pl’\pll) (9)

The central part of the condition (9) is the construction of the neighbourhood .V (P 2"
which is the interval [’ ¢"] in the s1ngle scalar case. N can be at most the cube (1} =
{o :pi € el el = H.l} defined by ' and " for pairwise interaction according to our
assumption of normalisation of the scalars. Reallzablhty requires that the mixed states are
in R, hence

NCCi_iNR (10)

must hold. Symmetry
PEN & o +p"'—peEN (11)

must be imposed to insure the properties of a mixing model. Furthermore is T pdf with
respect to p

/ dpT(o'. 9" 2) =1 (12)
R

Conditions (8)-(12) do not define the mixing model uniquely but represent a class of models.
It is important to realize that the structure of the scalar domain R modifies the neighbourhood
N unless .V is reduced to the line connecting ' and p"". If ' and »" are close to the boundary
of R the neighbourhood is essentially the connecting line > due to (10). but if the poi-  are
inside R and far away from its boundary then may N be the cube C;_;. The transit. pdf
T determines the particular form of the mixing model and is set up in the present case as

T(pl.gll.ﬁ) — G(S)H(ﬁ,-;”-ﬁ) 13)
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where

H(\P,NA”-Q) — { ﬂl—llt-‘\") for v € .\"(i'.ﬁ’,) (14)
0 otherwise

and p;_1(V) is the [ — 1-dimensional volume of N (', ") and ¢ denotes the centered variable

_ 1 o -
(= ————[p— 5+ A =21 (13}

It follows that T satisfies
/ dCG(¢) = 21! (16)
N -~

and

G(¢) = G(—() (17)

The present choice for the function G(() is a constant determined by the condition (16) which
can be regarded as the condition to assign equal probability to all possible outcomes of the
mixing interaction of two fluid elements. The mixing model for (5) is thus set up.

2.4 Compressibility Effects.

It is advantageous to set up the closure model representing the effects of compressibility
in the Lagrangean frame as stochastic differential equations. The basic laws are written in
abbreviated form

dlogpz_D (18)

dt

for mass balance D
= =Qp (19)

dt

for the balance equation for the relative rate of volume expansion

dFE
— = (20)
7 Qe

for the energy equation in terms of the internal energy per unit mass and finally

d¢ ;
= =0, (21)
dt e

for the mixture fraction, where d/dt denotes the material derivative and D = V-u the relative
rate of volume expansion. The right hand side terms are conveniently set up in the Eulerian
frame (which can be considered implicit Lagrangean expressions). The basic laws combined
with the constitutive relations for Newtonian fluids lead to the explicit form of the @, given
by :
1 9 101, g 1 0p Ovgy Ovg + Ma
D= Re dry p O Ore pOTq Or30rsa Org

(22)

Q

)



where g, denotes the energy flux vector,

. 1 ; B 0(10
= _~(~ — 2 _ = 2 — ' 2!
QE_ /(’ 1)"\[(1(l+p)D+ Rf I( ! 1)‘\1a¢ Rf Pr a.l‘(, ( 3)
and where ® is the dissipation function.
1 7] aC
- = r (24)
Qs Re Sc 0.1'0(/) O.r(,)

The general form of the closure model (24) for the pdf equation given above (4) (which con-
tains the dynamics of the variables density. internal energy. relative rate of volume expansion
and mixture fraction) is set up using the form of stochastic differential equation

(]
it

dY, = A dt + b;dWV; +dJ, (

The stochastic nature of (25) is given by d1¥,, which is the increment of a normalized random
process (such as the Wiener process), and d.J;, which is the increment corresponding to a
jump process. The closure for the equations (19) - (21) will discussed for each of them in
some detail.

I. The time rate of change of the relative rate of volume expansion consists of three
contributions: The increment due molecular transport which is regarded as mixing. the in-
crement due to the passage of isentropic compression and expansion waves past the material
point considered. and the passage of random shock waves past the material point considered.

The first contribution AD i, is represented by the mixing model (7) together with
the requirement that T is constant in its domain of definition. It can be shown that the
viscous term in (22) implies indeed that D is subject to diffusion. Hence will D participate
in the mixing model described in the previous chapter. The second contribution is modelled
according to an Ornstein-Uhlenbeck process

At

AD, = {enf(Ma) S0} 40 = 0,2 fM)Z2(D = (D)) 126)

where ¢,; = 1.0 and ¢,z = 0.5 are constants (the values given here are arbitrarily chosen and
a systematic variation is discussed in a later section) and

F(M,) = M2

is an empirical function of the local Mach-number. It ensures that the increment of D vanishes
as the Mach-number goes to zero. The first part of AD is a Wiener process (7 is a Gaussian
random variable with zero mean and unit variance) representing the random stirring effect of
isentropic compression and expansion waves moving past the material point considered. The
second part is a drift term ensuring the existence of a steady state. Finally, we note that 7 1s
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the turbulent time scale provided by the second order closure (see Dibble et al.. 1986). The
model for ¢ p has now the form

QDAf&ADmu‘ + AD!S + AD_.,[, (27)

where the first and the second contributions have been established. The last term represents
the random occurrence of shocks. This contribution is nearly singular and corresponds to the
derivative of a Dirac-pseudofunction in the inviscid limit. There is no model for it at present
and a way of treating random shocks will be discussed in the section II below.

I1. Mass balance (18) does not require closure and contains only a drift term
dlogp = —Ddt (28)

as long as the relative rate of volume expansion remains sufficiently smooth. The case of
random shocks leads to a singularity for D and will be treated as separate contribution to
dlog(p)/dt in the form of a jump process. If the local Mach-number is greater than unity.
shocks may appear with the maximal strength given by the normal shock relation

M2
G(Ma) = { oty or ezl (20)
0 otherwise.

and the increment d.J; for the jump process representing the random shocks is modelled by

dr = G SN Ly (30)
k T

where N,(6) denotes a nonegative integer random variable representing the number of shocks
arriving at the material point in ¢ dimensionless time units and 0 < < 1 1s the random
variable giving the dimensionless shock strength. The current model for .V, (o) 1s a Poisson
process and 7 is a random variable with uniform distribution. The complete increment for
the logarithm of density is thus given by

Alog p= — DAt +dJy + ADy;, (31)

where the last contribution is due to frictional heating at constant pressure. This contribution
is given by
ADyis = p(Cou + Au, p) — p(Cou,p)

where Au is the increment of internal energy due to frictional heating. Finally. we note that
log p does not participate in the mixing process.

II1. The increment for the internal energy consists of several contributions
. 1 ‘ :
QEAt=AU i + Auyy + {—7(y = 1)AMZ(1 + p)D + -}—2;7(*, —D)M2OIAE + Augp (32)
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The first part is due to heat conduction and is therefore part of the mixing model applied
to internal energy. The second part of the increment is due to the isentropic expansion aud
compression waves passing the point considered and can be written as

At = u(C.5op+ Ap) —ul(.5.p)

where Ap = —DAt denotes the change of density as a result of the change in the relative
rate of volume expansion. The third part contains the pressure work term and the frictional
heating contribution. The dissipation function consists of

for flows of boundary layer type. The last contribution is due to the random arrival of shocks
at the material point considered.



3.0 Prediction of supersonic hydrogen flames.

The closure model developed in the previous chapter was applied to the prediction of super-
sonic hydrogen flames burning in coflowing stream of air. The flow configuration was a round
H; jet with a coflowing stream of air at higher temperature than the fuel. The prediction
requires accurate initial data which will be discussed next.

3.1 Initial conditions.

The flow conditions of the first test case of Evans et al. (1978) are shown in Fig.1.

calculated
planes

0.0S
r [m]
0.00
H2-Injector :
» & ¥ instde diameters 0.006525 m
. 05# 35 outside diamater: 0.009525 m
7 nozzle Air-Nozzle: .
: inside diameter: 0.0653 m
-O'Ic 1L lf‘rrTll" LR L] | LR RS r]lllflll
-0.08 0.00 0.05 0.10 0.15 0.20 0.5 0.30

z (m]

Fig.1 Flow geometry for the supersonic H;-air flame.

Cold hydrogen at Ty, = 251K is injected at the axis of a circular supersonic air flow
generated by a convergent-divergent nozzle. The air temperature is given by T,ir = 14951\,
This temperature is achieved by burning hydrogen upstream of the nozzle and then adding
oxygen to the hot products to produce X, = 0.21 mole fraction corresponding to air. The
air flow contains, therefore, a high percentage of water as product of the heating process

(X 1,0 = 0.281). The boundary conditions and the nozzle geometry are summarized in Table
1.



Exit condition : H,-Jet Quter Jet

Mach Number Ma 2.0 1.9
Temperatur, K T : 251.0 1495.0
Mean Velocity, m/s um 2432 1510
Pressure, MPa p : 0.1 0.1
Mass Fraction
Y, 1.000 0.000
Yo, : 0.000 0.241
Yv, : 0.000 0.478
Yi,0: 0.000 0.281

Table 1. Initial data.

The calculation of the turbulent nonpremixed flame is carried out with the hybrid method
developed by Chen and INollmann (1988). The first step in the solution procedure is the
calculation of the thermo-chemical properties. which are stored in a table for the later use in
the solution of the pdf equation. The results of this calculation were reported by Farshchi et
al. (1991). The next step is the set up of the initial (or entrance) conditions appropriate for
the first test case of Evans et a. (1978). The initial velocity profile is shown in Fig.2 where
the symbols indicate the initial location of the grid points.The H, stream contains 30 grid
points and the coflowing air stream 18 points.

3000
[m/s] UH,
2500

2000 Yair
&
1500

1000

S00

Fig.2 Initial velocity profile.
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4.0 Results and comparison with experiments.

The thermo-chemical properties of the reacting mixture of H, and air are deternined from
the condition of chemical equilibrium constrained with pressure and internal energy. This
assumption is unrealistic for many situations in supersonic flows. but it is the logical first
step in the development of prediction models for such flows. The extension to chewmical non-
equilibrium has been carried out for zero Mach-number flames (see Chen and Kollmann. 1988,
1990) and, once the questions concerning compressibility effects on the turbulence structure
have been sorted out, the results obtained for zero Mach-number flames can be applied to
supersonic flows.

The fuel considered in the present prediction was a mixture of hydrogen and nitrogen
(Yo = 0.22335 and Yy, = 0.77663, in order to raise the stoichiometric value of nuxture
fraction from (,; = 0.0283 for pure hydrogen fuel to (,; = 0.113. The pure hydrogen case was
also considered but only results for the former case will be presented.

The pdf equation is solved using a stochastic simulation technique (see Pope, 1985 for
details) together with a second order closure model for the first and second order moments of
the velocity field (Dibble et al., 1986) including modifications accounting for compressibility
effects (Zeman, 1989) on the dissiaption rate based on direct simulation results by Lele {1989).

4.1 Parametric study of the compressibility model (26).

The compressibility model (26) represents the random passage of compression and expansion
waves passing the material point considered. The function f(M,) = M 2 is an ad hoc model for
the unknown dependence of this model on the Mach-number. It is clear from the consideration
of the low Mach-number limit that this function must be nonnegative and vanish as the
Mach-number approaches zero. These two properties are obviously satisfied by this function.
The model (26) contains furthermore two constants c,; and c,; for which no information is
available at this time. Hence two reference values c,1=1.0 and cp; = 0.5 were chosen and a
systematic variation of the constants was carried out to learn how the solution depends on
them. The results for one of two sets of runs are presented in Fig.3 to Fig.16 varying the
constant c,;. There is only a limited amount of experimental data available in Evans et al.
(1978), which consist of Pitot pressure measurements and some composition information at
two cross sections. The Pitot pressure results at the first station /D = 13.8 in Fig.3 shows
clearly that increasing the value of ¢, leads to significant improvement. It should be noted.
however, that perfect agreement is not to be expected near the axis where the temperature of
the fuel is below the minimal temperature of T = 2961y for which thermodynamic data were
available and the equilibrium relations could be established. The initial temeperature of the
fuel stream had to be set to this temperature and not the temperature of the experiments.
The profiles for the mean velocity (which is calculated using a second order closure model
solved parallel to the stochastic simulation procedure for the pdf equation) in F0g.4, the mean
density in Fig.5, the mean temperature in Fig.6. the mean internal energy in Fig. 7. the mean
mixture fraction in Fig.8 and the mean value for the relative rate of volume expansion D in
Fig.9 show the corresponding variation with c,;. The mean value for D in Fig.9 is apparently
zero, with some numerical noise which is typical for stochastic simulation techniques. visible.
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The results for the second axia] station at r/D = 26.2 confirm the tendency that emerged
at the first staion. The agreement between the calculated and the measured Pitot pressure
in Fig.10 is quite good except near the axis for reasons explained above. Only the mean
temperature in Fig.13 and the mean density in Fig.12 show a strong dependence on ¢,;. The
mean dilation in Fig.16 is again close to zero indicating the there is no significant turning of
the mean streamlines occurring. The mean composition for fuel and oxidiser in Fig. 17 and
Fig.18 shows reasonable agreement between calculation and measurements.

4.2 Mean values and correlations.

The mean values for the scalar fields and the velocity field are presented at r/D = 15.5
in Fig.19 to Fig.36. Pdf methods allow the calculation of any moment of the probabilistic
variables of the pdf and the order of the moment 1s only limited by numerical accuracy. The
mean values for the thermodynamic variables show that the mean internal energy (Fig.20)
is minimal at the axis since the enthalpy of formation for the fuel is negative. Mean density
in Fig.21 and mean temperature in Fig.22 are similar to the results obtained for low \Mach-
number jet lames (Chen and Kollmann, 1988). The mean pressure, however, is not constant
across the supersonic flame as can be seen in Fig.23. A small pressure depression at the
location of the flame is apparent and the pressure in the cold fuel is higher than the ambient
pressure. The mean velocity in Fig. 24 shows that at /D = 15.5 most of the initial velocity
difference has been smoothed out and only small mean strain rates are present. The Reynolds
stress components in Fig.25 indicate the presence of two shear layers between the fuel Jet and
the coflowing air jet and the air Jet and stagnant surrounding air. The mean dissipation rate
in Fig.26 reflects only the inner shear layer formed between fuel and coflowing air jets. The
correlations of thermodynamic variables have several interesting features. Mixture fraction
and internal energy are mostly negatively correlated (F ig.28) since the internal energy for the
fuel is negative but the mixture fraction for the fuel is maximal (unity). The correlations of
mixture fraction and density (Fig.29) and internal energy and density (Fig.32) change sign
over the cross section. The correlations with the relative rate of volume expansion are rather
small and rather noisy Fig.30, 33, 35 and 36).

4.3 One-dimensional pdfs.

The information on the various pdfs for the thermodynamic scalars is contained in fig.37
to fig.56 at /D = 15.5 for five radial stations. The pdf for mixture fraction in Fig.37 to
Fig.41 shows the change of sign of the skewness as the flow is traversed. The pdf of the
internal energy in Fig.42 to Fig.46 has a shape similar to the pdf of mixture fraction with the
opposite sign for the skewness. The pdf for density in Fig.47 to Fig.51 shows the appearance
of entrained heated air at radial stations greater than r/D = 84 (Fig.49) which emerges as
spike around p = 0.23. The pdf of the relative rate of volume expansion in Fig. 32 to Fig.36 is
close to the Gaussian which due to the model equation (26) simulating an Ornstein-Uhlenbeck
process.

4.4 Two-dimensional pdfs.



The effect of compressibility becomes apparent if two-dimensional pdfs are considered. The
comparison of the one-dimensional pdfs for mixture fraction and internal energy (or any
other thermodynamic variable except enthalpy, which is a linear function of mixture fraction
at M, = 0.0, and mixture fraction) does not lead to unambigous conclusions. hecause the
local relation between those variables, that holds at zero Mach-number, is nonlinear. The
Ornstein-Uhlenbeck process described in chapter 2.4 as model for the random fluctuations of
the relative rate of volume expansion leads to a broadening of the pdf for thermodynamic
variables and mixture fraction. which would be related locally in incompressible flows. The
pdf of mixture fraction and internal energy shows some broadening due to compressibility as
Fig.57 to Fig.61 prove. However, the pdf of density and mixture fraction in Fig.62 to Fig.66
exhibits a much more pronounced broadening in particular in shear layer between fuel and
heated air at +/D = 0.27 in Fig.62. The pdf of density and internal energy in Fig.67 to Fig.71
confirms this fact. The pdf containing the relative rate of volume expansion D as one of the
variables allow some insight into the properties of the model suggested in equation (26). The
pdfs for internal energy and D in Fig.72 to Fig.76 and in particular the pdfs for density and
d in Fig.77 to Fig.81 show that The statistics of those variables are not Gaussian but the
marginal pdf for D is close to Gaussian.

5.0 Conclusions.

It was shown that pdfs for three scalar variables describing the local thermodynamic state
in a compressible reacting flow can be determined as solutions of model equation that sim-
ulates the effects of convection, turbulent diffusion, chemical reactions and reversible and
irreversible compression and expansion processes occuring randomly in a turbulent flow at
high speed. The limited amount of experimental information does not allow to draw a final
conclusion concerning the accuracy of the calculations, but it is clear that pdf predictions
of compressible reacting flows are feasible. There are. however, several problems awaiting
solution. In particular the role of the fluctuating pressure containing several different modes
(acoustic mode, entropy mode) and the significance of chemical non-equilibrium need to be
investigated. Pdf methods are especially well suited for the latter because they allow rigorous
treatment of nonlinear and local processes.
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Fig. 19. Coaxial turbulent supersonic jet flame burning H, with air. Mean mixture fraction
at £/D = 15.5 for ¢,1 = 1.0 and ¢,2 = 0.5. '
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Fig. 20. Coaxial turbulent supersonic jet flame burning H, with air. Mean internal energy

- at z/D = 15.5 for cp,1 = 1.0 and c,2 = 0.5.



0.20 0.25
i

0.1S

0.10

i

<p> [kg/m]

0.05

0.00

Ll ¥ Ll L 1 ¥ ¥ ] v

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

_r/d [-]

Fig. 21. Coaxial turbulent supersonic jet flame burning Hy with air. Mean density at
r/D =15.5 for ¢,; = 1.0 and ¢, = 0.5.
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Fig. 22. Coaxial turbulent supersonic jet flame burning Hp with air. Mean temperature at
r/D =13.5 for ¢,y = 1.0 and ¢,; = 0.5.
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Fig. 23. Coaxial turbulent supersonic jet flame burning H, with air. Mean pressure at
z/D =15.5 for ¢,; = 1.0 and ¢,; = 0.5.
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Fig. 24. Coaxial turbulent supersonic jet flame burning H, with air. Mean velocity at
/D = 13.5 for c,; = 1.0 and ¢,; = 0.5.
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Fig. 25. Coaxial turbulent supersonic jet lame burning H, with air. Reynolds stress com-
ponents at r/D = 13.5 for ¢,; = 1.0 and c¢,; = 0.5.
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Fig. 26. Coaxial turbulent supersonic jet flame burning H, with air. Mean Dissipation rate
at r/D =135.5 for ¢,y = 1.0 and ¢, = 0.5.
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Fig. 27. Coaxial turbulent supersonic jet flame burning Hy with air. Variance of mixture
fraction at r/D = 13.5 for ¢,; = 1.0 and c,; = 0.5.
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Fig. 28. Coaxial turbulent supersonic jet flame burning Hy with air. Covariance of mixture
fraction and internal energy at /D = 13.3 for ¢, = 1.0 and c,; = 0.3.
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Fig. 29. Coaxial turbulent supersonic jet flame burning H, with air. Covariance of mixture

fraction and density at r/D = 13.5 for c,; = 1.0 and cp2 = 0.5.
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Fig. 30. Coaxial turbulent supersonic jet flame burning H, with air. Covariance of mixture
fraction and relative rate of volume expansion at «/D = 13.5 for ¢,y = 1.0 and ¢,; = 0.5.
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Fig. 31. Coaxial turbulent supersonic jet flame burning H, vnth air. Variance of internal
energy at r/D = 135.5 for ¢, = 1.0 and ¢, = 0.5.
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Fig. 32. Coaxial turbulent supersonic jet flame burning H, with air. Covariance of internal
energy and density at +/D = 15.5 for ¢,; = 1.0 and ¢, = 0.5.
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Fig. 33. Coaxial turbulent supersonic jet flaine burning H, with air. Covariance of internal
energy and relative rate of volume expansion at /D = 15.5 for ¢,; = 1.0 and ¢, = 0.5.
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Fig. 34. Coaxial turbulent supersonic Jjet flame burning Hy with air. Variance of densiry at
r/D =13.5 for cpt = 1.0 and ¢, = 0.5.
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Fig. 35. Coaxial ti.-Hulent supersonic jet flame burning H, with air. Covariance of density
and relative rate of volume expansion at r/D = 13.5 for ¢, = 1.0 and ¢, = 0.5
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Fig. 36. Coaxial turbulent supersonic jet fHame bhurning H, with air. Variance of relative rare
of volume expansion at /D = 13.5 for ¢,; = 1.0 and ¢,; = 0.3.
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Fig. 37. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of mixture fraction
at /D =13.5 and »/D = 0.27 for c,; = 1.0 and c,; = 0.5.
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Fig. 38. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of mixture fracrion
at ¢/D =15.5 and /D = 0.35 for ¢,; = 1.0 and ¢,,; = 0.5.
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Fig. 39. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of mixture fraction
at /D = 15.5 and /D = 0.84 for c,; = 1.0 and ¢,; = 0.3.
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Fig. 40. Coaxial rurbulent supersonic jet fame burning H, with air. Pdf of mixnue fraction
at /D =13.5 and r/D = 1.14 for ¢, = 1.0 and ¢, = 0.3.
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Fig. 41. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of mixture fraction
at /D =15.5 and r/D =142 for c,; = 1.0 and ¢,, = 0.3.
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Fig. 42. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal energy
at r/D =15.5 and r/D = 0.27 for cpi = 1.0 and ¢,, = 0.3.
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Fig. 43. Coaxial turbulent supersonic jet lame burning H, with air. Pdf of internal energy
at /D = 13.5 and r/D = 0.53 for ¢, = 1.0 and c,2 = 0.3.
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Fig. 44. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal enerey
at £/D =13.5 and r/D = 0.84 for ¢,, = 1.0 and cp2 = 0.5.
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Fig. 45. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal energy
at /D =15.5 and r/D = 1.14 for ¢,y = 1.0 and c,2 = 0.5.
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Fig. 46. Coaxial turbulent supersonic jet Hame burning H; with air. Pdf of internal energy
at /D =15.5 and r/D =142 for ¢,; = 1.0 and c,, = 0.5.
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Fig. 47. Coaxial turbulent supersonic jet flame burning H; with air. Pdf of density at
z/D =155 and r/D = 0.27 for ¢,; = 1.0 and ¢,; = 0.5.
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Fig. 48. Coaxial twhulent supersonic jet Hame burning H, with air. Pdf of density at
r/D =13.5 and r/D = 0.33 for cpr = 1.0 and ¢, = 0.5.
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Fig. 49. Coaxial turbulent supersonic jet flame burning H; with air. Pdf of density at
z/D =135.5 and r/D = 0.84 for ¢,, = 1.0 and cp2 = 0.5.
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Fig. 30. Coaxial turhulent supersonic jet flame burning H, with air. Pdf of density at
/D =155 and r/D = 1.14 for cp1 = 1.0 and ¢, = 0.3.
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volume expansion at v/D = 15.5 and r/D = 0.27 for ¢,1 = 1.0 and ¢, = 0.5.



0.5 0.6 0.7
1

0.4

Pdf(D)

T™

1
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 .5 2

B> TY) 7/ | B

Fig. 53. Coaxial turbulent supersonic jet flame burning Hy with air. Pdf of relative rate of
volume expansion at r/D = 15.5 and r/D = 0.35 for ¢, = 1.0 and ¢,z = 0.5.
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Fig. 54. Coaxial turbulent supersonic jet Hame burning H, with air. Pdf of relative rate of
volume expansion at +/D = 15.5 and r/D = 0.84 for ¢,; = 1.0 and ¢,; = 0.3.
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Fig. 535. Coaxial turbulent supersonic jet flame burning H; with air. Pdf of relative rate of
volume expansion at r/D = 15.5 and r/D = 1.14 for ¢, = 1.0 and ¢,; = 0.5.
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Fig. 36. Coaxial turhulent supersonic jet flame burning Hp with air. Pdf of relative rate of
volume expansion at +/D = 15.5 and r/D = 1.42 for ¢,y = 1.0 and ¢,, = 0.5.



Fig. 57. Coaxial turbulent supersonic jet flame burning Hy with air. Pdf of mixture fraction

and internal energy at /D = 15.5 and r/D = 0.27 for ¢,
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Fig. 38. Coaxial turbulent supersonic jet lame burning H, with air.” Pdf of mixture fraction
and internal energy at +/D = 153.5 and r/D = 0.35 for ¢,y = 1.0 and c,2 = 0.5



Fig. 59. Coaxial turbulent supersonic jet flame burning Hy with air. Pdf of mixture fraction
and internal energy at +/D = 15.5 and r/D = 0.84 for ¢,y = 1.0 and cp2 = 0.9.



Fig. 60. Coaxial nubulent supersonic jet flame burning Hy with air. Pdf of mixture fraction

and internal energy at /D = 13.5 and »/D

= 0.o.
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Fig. 61. Coaxial turbulent supersonic jet lame burning H, with air. Pdf of mixture fraction

and internal energy at «/D = 15.5 and r/D = 1.42 for ¢,



Fig. 62. Coaxial turbulent supersonic jet flame burning H; with air. Pdf of mixture fraction
and density at v/D = 15.5 and r/D = 0.27 for ¢,; = 1.0 and ¢, = 0.5.
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Fig. 63. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of mixture fraction
and density at /D = 15.5 and r/D = 0.55 for ¢,y = 1.0 and c¢,2 = 0.5.



Fig. 64. Coaxial turbulent supersonic jet flame burning Hp with air. Pdf of mixture fraction

and density at r

0.5.
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Fig. 65. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of mixture fraction

and density at +/D = 15.5 and /D = 1.14 for ¢,

1.0 and c,; = 0.5.



Fig. 66. Coaxial turbulent supersonic jet flame burning Hy with air. Pdf of mixture fraction

and density at .r

= 0.3.

5and r/D = 142 for ¢, = 1.0 and ¢y

/D =15.



Fig. 67. Coaxial turbulent supersonic jet lame burning Hy with air. Pdf of internal energy -
and density at +/D = 15.5 and r/D = 0.27 for ¢,; = 1.0 and ¢, = 0.5.



Fig. 68. Coaxial turbulent supersonic jet Hame burning H, with air. Pdf of internal energy

and density at »

= 0.5.
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Fig. 69. Coaxial turbulent supersonic jet flame hurning H, with air. Pdf of internal energy
and density at r/D = 15.5 and r/D = 0.84 for ¢,; = 1.0 and ¢,; = 0.5.
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Fig. 70. Coaxial turbulent supersonic jet flame burning Hp with air. Pdf of internal energy
and density at +/D = 13.5 and /D = 1.14 for c,; = 1.0 and cp2 = 0.5.
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Fig. 71. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal energy
and density at v/D = 13.5 and r/D = 1.42 for ¢, = 1.0 and ¢,z = 0.5.



Fig. 72. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal energy
and relative rate of volume expansion at +/D = 15.5 and r/D = 0.27 for ¢,; = 1.0 and
cp2 = 0.3.
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Fig. 73. Coaxial turbulent supersonic jet flame burning H; with air. Pdf of internal energy
and relative rate of volume expansion at /D = 15.5 and r/D = 0.55 for ¢,; = 1.0 and
cp2 = 0.5.
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Fig. 74. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal energy
and relative rate of volume expansion at +/D = 13.53 and r/D = 0.84 for c,; = 1.0 and
Cp2 = 0.5.



Fig. 75. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal energy.

and relative rate of volume expansion at +/D = 15.5 and r/D = 1.14 for c,; = 1.0 and
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Fig. 76. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of internal energy
and relative rate of volume expansion at +/D = 15.5 and r/D = 1.42 for ¢,1 = 1.0 and
Cp2 = 0.5.



Fig. 77. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of density and.
relative rate of volume expansion at +/D = 13.5 and r/D = 0.27 for ¢, = 1.0 and ¢,y = 0.5



Fig. 78. Coaxial turbulent supersonic jet flame burning H; with air. *Pdf of density and
relative rate of volume expansion at /D = 15.5 and r/D = 0.35 for ¢,; = 1.0 and ¢, = 0.5.



Fig. 79. Coaxial turbulent supersonic jet flame hurning Hz with air. Pdf of density and
relative rate of volume expansion at r/D = 15.5 and r/D = 0.84 for ¢,y = 1.0 and c,, = 0.5.
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Fig. 80. Coaxial turbulent supersonic jet flame burning H, with air. Pdf of density and
relative rate of volume expansion at r/D = 15.5 and r/D = 1.14 for ¢, = 1.0 and ¢,2 = 0.5.



Fig. 81. Coaxial turbulent supersonic jet lame burning H, with air. Pdf of density and
- relative rate of volume expansion at +/D = 15.3 and r/D = 1.42 for ¢,; = 1.0 and ¢,; = 0.5.



